| 研究生: |
李仁佑 Jen-yu Lee |
|---|---|
| 論文名稱: |
多重基因-疾病關聯性檢定之研究 A research in testing genes and disease association |
| 指導教授: |
鄭光甫
Kuang-Fu Cheng |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 界限 、基因交互作用 、族群分層 、病例-對照研究 |
| 外文關鍵詞: | case-control study, population stratification, gene-gene interaction, bound |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在傳統基因與疾病的研究中,通常僅討論一個基因座的影響,但是基因與疾病的關聯性相當複雜,往往致病的因子並不僅止於單一個基因座;因此許多的學者將基因的主效用與交互作用影響一起討論,而且此模式大幅提升了檢定方法的偵測效率。在現有的許多檢定方法中,很難找出一個穩健且檢定力最佳的方法,故本文中我們針對此問題提出一個更穩健且檢定力更佳的方法;先討論兩基因座之模式,再延伸至三基因座以上使得我們的方法的應用更廣泛。事實上,在直接模式(direct model)下統計量是屬於Cochran-Mantel-Haenszel的統計量且在虛無假設下為自由度1的卡方分配;在間接模式(indirect model)下則須要靠排列的方法(permutation procedure)來幫助計算檢定的p值。此處我們並討論population stratification所帶來的影響,並修正我們的統計量使其保有穩定的型I誤差並且有很好的檢定力。利用模擬研究將所提之新檢定統計量與其他方法比較,在直接模式下各有所長,而在間接模式時則是以新檢定統計量較佳。我們並應用此統計量來檢測台灣人的糖尿病視網膜病變(diabetic retinopathy)實際資料。最後,我們提出了一個界限(bound)來幫助我們了解population stratification所帶來的影響大小,進一步了解在檢定時所得到的結果是否適合並正確。
The research in detecting the association of gene and disease often starts at one gene, but it may not be the only one reason which the disease happened since the complication relationship of gene and disease. Complex models which contain more genes, environmental factors and their interactions are discussed, and this kind of models increases detecting efficiency in statistical method. The most important goal is to find a robust and powerful method, so that we want to propose a new method to solve this problem. First, we construct a two factor model for detecting the association of gene and disease. To make our method more general, we further construct a multi-factor model. In fact, the idea of our statistic under direct model is from Cochran-Mantel-Haenszel statistic, and is a Chi-square distribution with degree of freedom one. Under indirect model, we use permutation argument to calculate p-value. We also discuss the effect of population stratification and modify the method to maintain reasonable type I error rate. The statistic is competitive to other methods under direct or indirect model. The use of the proposed method is illustrated with the diabetic retinopathy data in Taiwan. Finally, we propose a specific vision “bound” which help us to understand the bias from population stratification, and also help to detect the correctness of the association tests.
1. Bacanu SA, Devlin B, Roeder K. (2000) The power of genomic control. Am J Hum Genet, 66, 1933-1944.
2. Bacanu SA, Devlin B, Roeder K. (2002) Association studies for quantitative traits in structured populations. Genet Epidemiol, 22, 78-93.
3. Cardon LR, Palmer LJ. (2003) Population stratification and spurious association, Lancet, 361, 598-604.
4. Clayton DG, Chapman JM, Cooper JD. (2004) Use of unphased multilocus genotype data in indirect association studies. Genet Epidemiol, 27, 415-428.
5. Chapman JM, Clayton DG. (2007) One degree of freedom for dominance in indirect association studies. Genet Epidemiol, 31, 261-271.
6. Chapman JM, Clayton DG. (2007) Detecting association using epistatic information. Genet Epidemiol, 31, 894-909.
7. Cheng KF, Lin WJ. (2007) Simultaneously correcting for population stratification and genotyping error in case-control association studies. Am J Hum Genet, 81, 726-743.
8. Cheng KF, Lee JY, Chen JH. (2010) Studying the joint effects of population stratification and sampling in case-control association studies. Hum Hered, 69, 254-261.
9. Devlin B, Roeder K. (1999) Genomic control for association studies. Biometrics, 55, 997-1004.
10. Devlin B, Roeder K, Bacanu SA. (2001) Unbiased methods for population-based association studies. Genet Epidemiol, 21, 273-284.
11. Devlin B, Roeder K, Wasserman L. (2001) Genomic control, a new approach to genetic-based association studies. Theor Popul Biol, 60, 155-166.
12. Freedman ML, Reich D, Penney KL, McDonald GJ, Mingnault AA, Patterson N, Gabriel SB, Topol EJ, Smoller JW, Pato CN, Pato MT, Petryshen TL, Kolonel LN, Lander ES, Sklar P, Henderson B, Hirschhorn JN, Altshuler D. (2004) Assessing the impact of population stratification on genetic association studies. Nature Genetics, 36(4), 388-393.
13. Gordon D, Health SC, Liu X, Ott J. (2001) A transmission/disequilibrium test that allows for genotyping errors in the analysis of single nucleotide polymorphism data. Am J Hum Genet, 69, 371-380.
14. Garte S, Gaspari L, Alexandrie AK, Ambrosone C, Autrup H, Autrup JL, Baranova H, Bathum L, Benhamou S, Boffetta P, Bouchardy C, Breskvar K, Brockmoller J, Cascorbi I, Clapper ML, Coutelle C, Daly A, Dell’Omo M, Dolzan V, Dresler CM, Fryer A, Haugen , Hsieh LL, Ingelman-Sundberg M, Kalina I, Kang D, Kihara M, Kiyohara C, Kremers P, Lazarus P, Marchand LL, Lechner MC, Lieshout MM, London S, Manni J, Maugard CM, Morita S, Nazar-Steward V, Noda K, Oda Y, Parl FF, Pastrorelli R, Persson I, Peters WHM, Rannug A, Rebbeck T, Risch A, Roelandt L, Romkes M, Ryberg D, Salagovic J, Schoket B, Seidegard J, Shields PG, Sim E, Sinnet D, Strange RC, Stücker I, Sugimura H, To-Figueras J, Vineis P, Yu MC, Taioli E. (2001) Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev , 10, 1239-1248.
15. Godenberg RL, Culhane JF, Iams JD, Remero R. (2008) Epidemiology and causes of preterm birth. Lancet, 371, 75-84.
16. Han J, Hankinson SE, Colditz GA, Hunter DJ. (2004) Genetic variation in XRCC1, sun exposure, and risk of skin cancer. Br J Cancer, 91, 1604-1609.
17. Haiman CA, Stram DO, Wilkens LR, Pike MC, Kolonel LN, Henderson BE, Le Marchand L. (2006) Ethnic and racial differences in the smoking-related risk of lung cancer. N Engl J Med, 354, 333-342.
18. Huang YC, Lin JM, Lin HJ, Chen CC, Chen SY, Tsai CH, Tsai FJ. (2010) Genome-wide association study of diabetic retinopathy in a Taiwanese population. To appear in Ophthalmology.
19. Knowler WC, Williams RC, Pettitt DJ, Steinberg AG. (1988) Gm3;5,13,14 and type 2 diabetes mellitus: an association in American Indians with genetic admixture. Am J Hum Genet, 43, 520-526.
20. Kraft P, Yen YC, Stram DO, Morris J, Gauderman WJ. (2007) Exploiting gene-environment interaction to detect genetic associations. Hum Hered, 63, 111-119.
21. Kooperberg C, LeBlanc M. (2008) Increasing the power of identifying gene×gene interactions in geno-wide association studies. Genet Epidemiol, 32, 255-263.
22. Lander ES, Schork NJ. (1994) Genetic dissection of complex traits. Science, 265, 2037-2048.
23. Lee WC, Wang LY. (2008) Simple formulas for gauging the potential impacts of population stratification bias. Am J Hum Genet, 167, 86-89.
24. Li D, Conti DV. (2008) Detecting gene-environment interactions using combined case-only and case-control approach. Am J Epidemiol, 169, 497-504.
25. Li Q, Yu K. (2008) Improved correction for population stratification in genome-wide studies by identifying hidden population structures. Genetic Epidemiol, 32, 215-226.
26. Malats N. (2001) Gene-environment interactions in pancreatic cancer. Pancreatology, 1(5), 472-476.
27. Morris RW and Kaplan NL. (2004) Testing for association with a case-parents design in the presence of genotyping errors. Genet Epidemiol, 26, 142-154.
28. Millstein J, Conti DV, Gilliland FD, Gauderman WJ. (2006) A testing framework for identifying susceptibility genes in the presence of epistasis. Am J Hum Genet, 78, 15-27.
29. McConnell R, Berhane K,Yao L,Jerrett M, Lurmann F, Gilliland F, Kunzli N, Gaugerman J, Avol E, Thomas D, Peters J. (2006) Traffic susceptibility, and child asthma. Environ Health Perspect, 114, 766-772.
30. Murcray CE, Lewinger JP, Gauderman WJ. (2008) Gene-environment interaction in genome-wide association studies. Am J Epidemiol, 169, 219-226.
31. Mukherjee B, Chatterjee N. (2008) Exploiting gene-environment independence for analysis of case-control studies: an empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency. Biometrics, 64, 685-694.
32. Mukherjee B, Ahn J, Gruber SB, Rennert G, Moreno V, Chatterjee N. (2008) Test for gene-environment interaction from case-control data: a novel study of type I error, power and designs. Genet Epidemiol, 32, 615-626.
33. Noether GE. (1955) On a theorem of Pitman. Ann. Math. Statist, 26,64-68.
34. Pitman EJG. (1949) Lecture Notes on Nonparametric Statistical Inference. Columbia University.
35. Pritchard JK, Stephens M, Donnelly P. (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.
36. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P. (2000) Association mapping in structured populations, Am J Hum Genet, 67, 170-181.
37. Palmer LJ, Cookson WOCM. (2000) Genomic Approaches to Understanding Asthma. Genome Res, 10, 1280-1287.
38. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. (2006) Principle components analysis corrects for stratification in genome-wide association studies. Nat Genet, 38, 904-909.
39. Pan W. (2009) Asymptotic tests of association with multiple SNPs in linkage Disequilibrium. Genet Epidemiol, 33, 497-507.
40. Pan W. (2010) Statistical tests of genetic association in the presence of gene-gene and gene-environment interactions. Hum Hered, 69, 131-142.
41. Risch NJ. (2000) Searching for genetic determinants in the new millennium. Nature, 405, 847-856.
42. Roeder K, Bacanu SA, Sonpar V, Zhang X, Devlin B. (2005) Analysis of single-locus tests to detect gene/diseases associations. Genet Epidemiol, 28,207-219.
43. Risch NJ. (2006) Detecing racial and ethnic differences. N Engl J Med, 354, 408-411.
44. Spielman RS, McGinnis RE, Ewens WJ. (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet, 52, 506-516.
45. Simonoff J. (1996) Smoothing Methods in Statistics. Springer Verlag.
46. Satten GA, Flanders WD, Yang Q. (2001) Accounting for unmeasured populations substructure in case control studies of genetic association using a novel latent-class model. Am J Hum Genet, 68, 466-477.
47. Stern MC, Johnson LR, Bell DA, Taylor JA. (2002) XPD codon751 polymorphism, metabolism genes, smoking, and bladder cancer risk. Cancer Epidemiol Biomarkers Prev, 11, 1004-1011.
48. Spurdle AB, Chang JH, Byrnes GB, Chen X, Dite GS, McCredie MRE, Giles GG, Southey MC, Chenevix-Trench G, Hopper JL. (2007) A systematic approach to analyzing gene-gene interactions: polymorphisms at the Microsomal Epoxide Hydrolase EPHX and Glutathione S-transferase GSTM1, GSTT1, and GSTP1 loci and breast cancer risk. Cancer Epidemiol Biomarkers Prev, 16(4), 769-774.
49. Tsai HJ, Liu X, Mestan K, Yu Y, Zhang S, Fang Y, Pearson C, Ortiz K, Zuckerman B, Bauchner H, Cerda S, Stubblefield PG, Xu X, Wang X. (2008) Maternal cigarette smoking, metabolic gene polymorphisms, and preterm delivery: new insights on GE interactions and pathogenic pathways. Hum Genet, 123, 359-369.
50. Umbach DM, Weinberg CR. (2000) The use of case-parent triads to study joint effects of genotype and exposure. Am J Hum Genet, 66, 251-261.
51. Wacholder S, Rothman N, Caporaso N. (2000) Population stratification in epidemiologic studies of common genetic variants and cancer: Quantification. J Natl Cancer Inst, 92, 1151-1158.
52. Wacholder S, Rothman N, Caporaso N. (2002) Counterpoint:Bias from population stratification is not a major threat to the validity of conclusions from epidemiological studies of common polymorphisms and cancer. Cancer Epidemiol Biomarkers Prev, 11, 513-520.
53. Wang Y, Localio R, Rebbeck TR. (2006) Evaluating bias due to population stratification in epidemiology studies of gene-gene or gene-environment interactions. Cancer Epidemiol Biomarkers Prev, 15(1), 124-132.
54. Wang T, Elston RC. (2007) Improved power by use of a weighted score test for linkage disequilibrium mapping. Am J Hum Genet, 80, 353-360.
55. Wang LY, Lee WC. (2008) Population stratification bias in the case-only study for gene-environment interactions. Am J Hum Genet, 168, 197-201.
56. Wang T, Ho G, Ye K, Strickler H, Elston RC. (2009) A partial least square approach for modeling gene-gene and gene-environment interactions when multiple markers are genotyped. Genet Epidemiol, 33(1), 6-15.
57. Zhang JT. (2005) Approximate and asymptotic distributions of Chi-square-type mixtures with applications. J Amer Statist Assoc, 100, 273-285.
58. Zhang Y, Liu JS. (2007) Bayesian inference of epistatic interactions in case-control studies. Nature Genetics, 39, 1167-1173.