跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林佳嫻
Jia-Xian Lin
論文名稱: 利用Landsat-8資料校正Sentinel-2地表反射率以改進氣膠光學厚度之反演
The correction of Sentinel-2 Land surface reflectance with Landsat-8 data for aerosol optical depth retrieval
指導教授: 林唐煌
口試委員:
學位類別: 碩士
Master
系所名稱: 太空及遙測研究中心 - 遙測科技碩士學位學程
Master of Science Program in Remote Sensing Science and Technology
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 73
中文關鍵詞: Sentinel-2氣膠光學厚度高時空解析度複雜地表離散係數法
外文關鍵詞: Sentinel-2, Aerosol Optical Depth, High Resolution, Complex Surfaces, Dispersion Coefficient Method
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人們對於空氣品質的意識日漸抬頭,在台灣地區常見的氣膠污染來源可以分成長程傳輸的境外間接污染以及與我們生活中人為活動容易接觸到的一次性污染。為了有效且即時監測小範圍地區污染源流動的幅度與該地區整體時空遭受污染的變異程度,政府、企業甚至是民間單位攜手合作建立起全台的空氣品質監測網。固然地面測站的測量可以更精準的了解一地的影響程度,但儀器本身的保養、校正、管理都需要耗費大量時間與人力,並且考慮到地形上的限制也無法有效提供完整的空間資訊。為此,透過衛星遙測技術結合氣膠反演方法,不僅可以改善監測方法於時間及空間上的缺陷在校正上也可以因為使用同一儀器,無須如地面測站一般各自獨立解決。目前服役的光學衛星中,10公尺空間解析度與每5天為單位的Sentinel-2最為精緻,該衛星是配合歐洲太空總署(European Space Agency, ESA)的計畫來進行,因此可以確保該資料在後續會持續穩定的提供。然而,在Sentinel-2產品應用上卻發現結果大有問題,將其與有相似波段的Landsat-8來做比較,根據輻射傳輸原理發現原因在於Sentinel-2的地表反射率(Land Surface Reflectance)上。因此本研究為了改善Sentinel-2地表反射率之問題,首先會利用地物分類法將地表進行NDVI區分,接著依照得到的區間套用各自的回歸式來做修正,最後則是將原始Sentinel-2大氣層頂反射率(Top-Of-Atmosphere reflectance)資料與修正後地表反射率一同帶入離散係數法中反演氣膠光學厚度,來有效監測地區性的氣膠污染排放程度。
    首先利用監督式分類法區分出密集植被區(DVA)、疏散植被區(BVA)、亮區(BA)三種地物下的歸一化植被指數(Normalized Difference Vegetation Index, NDVI)區間,發現NDVI大於0.3的DVA、BVA地區Sentinel-2反射率高估的情形特別明顯,因此帶入自身短波紅外光(SWIR2, 2.19μm)與可見光之間的線性模型修來做修正,至於BA地區則透過Landsat-8大氣層頂反射率與地表反射率的回歸式來處理。在30公尺解析度下的比較,修正後Sentinel-2 AOD落在期望誤差(Expected Error)內的比例藍光達到47%與Landsat-8 AOD的24%相比來的更好;而在10公尺解析度下的比較,雖然與AERONET AOD的相關性還有待修正,但整體絕對誤差與均方根誤差(RMSE)的表現有明顯的改善,說明本研究所提出的地表反射率計算方法可以有相對不錯的可行性。


    Increasing awareness of air quality in Taiwan has highlighted aerosol pollution sources, including long-range transport and local anthropogenic activities. To monitor pollution effectively in real-time, the government, enterprises, and civil sectors have collaborated to establish an air quality monitoring network. While ground-based stations offer precise measurements, their maintenance and geographic constraints limit spatial coverage. Satellite remote sensing combined with aerosol retrieval methods can address these limitations, providing consistent calibration across instruments. Sentinel-2, with its 10m spatial resolution and 5-day revisit time, is particularly suitable for this purpose. However, discrepancies have been found in Sentinel-2 Land Surface Reflectance (LSR) compared to Landsat-8, necessitating improvements.
    This study aims to enhance Sentinel-2 LSR by classifying land cover using NDVI and applying specific regression corrections. The corrected LSR and original Top-Of-Atmosphere (TOA) reflectance are used for aerosol optical depth (AOD) retrieval via the Discrete Coefficient Method(DCM). Three land cover types were identified: Dense Vegetation Area(DVA), Barely Vegetation Area(BVA), and Bright Areas (BA). Overestimation in areas with NDVI >0.3 was corrected using SWIR2 and visible band regressions, while BA areas were corrected using Landsat-8 TOA-to-LSR regression.
    At a 30m resolution, the corrected Sentinel-2 AOD exhibits a higher percentage within the Expected Error (EE) range compared to Landsat-8. Specifically, 47% of the corrected Sentinel-2 AOD falls within the EE for the blue band, while only 24% does for Landsat-8. At a 10m resolution, despite the need for improved correlation with AERONET AOD, both the absolute error and RMSE showed significant improvement. This validates the proposed LSR correction method for effective regional aerosol pollution monitoring, suggesting its feasibility and potential for broader application.

    摘要 I ABSTRACT III 目次 V 圖目錄 VII 表目錄 X 第一章 前言 1 1.1 背景 1 1.2 文獻回顧 4 1.2.1 輻射傳輸原理 4 1.2.2 地表反射率估算 5 1.2.3 氣膠光學厚度反演 8 1.3 研究動機與目的 10 第二章 研究資料 11 2.1 衛星觀測資料 11 2.1.1 Sentinel-2 11 2.1.2 Landsat-8 13 2.2 地面觀測資料 15 2.2.1 AERONET 15 2.3 研究個案介紹 17 第三章 研究方法 23 3.1 資料前處理 23 3.1.1 雲與雲遮處理 23 3.1.2 幾何校正與重新投影 24 3.2 監督式地物分類 25 3.3 SENTINEL-2地表反射率估算 28 3.3.1 密集植被區(Densely Vegetated Areas, DVA ) 28 3.3.2 疏散植被區(Barely Vegetated Areas, BVA) 29 3.3.3 亮區(Bright Area, BA) 30 3.4 氣膠光學厚度反演之離散係數法 31 3.5 研究流程 34 第四章 結果與討論 35 4.1 監督式分類後兩衛星在地表反射率之比較 35 4.2 分類後各地表反射率再計算之分析 38 4.3 地表反射率再計算後AOD結果與其他衛星之比較 41 4.3.1 綜合全部個案於30公尺解析度AOD結果之比較 41 4.3.2 綜合全部個案於10公尺解析度AOD結果之比較 44 4.4 DCM於可見光波段下各視窗之比較 48 第五章 結論與未來展望 51 5.1 結論 51 5.2 未來展望 53 參考文獻 54

    [1.] Aguilar, M. A., Jiménez-Lao, R., Ladisa, C., Aguilar, F. J., & Tarantino, E. (2022). Comparison of spectral indices extracted from Sentinel-2 images to map plastic covered greenhouses through an object-based approach. GIScience & Remote Sensing, 59(1), 822-842.
    [2.] Baetens, L., Desjardins, C., & Hagolle, O. (2019). Validation of copernicus Sentinel-2 cloud masks obtained from MAJA, Sen2Cor, and FMask processors using reference cloud masks generated with a supervised active learning procedure. Remote Sensing, 11(4), 433.
    [3.] Chu, D. A., Kaufman, Y. J., Ichoku, C., Remer, L. A., Tanré, D., & Holben, B. N. (2002). Validation of MODIS aerosol optical depth retrieval over land. Geophysical research letters, 29(12), MOD2-1.
    [4.] Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J. C., ... & Justice, C. (2018). The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote sensing of environment, 219, 145-161.
    [5.] Copernicus. (n.d.). L1C processing baseline. Sentinel-2 MSI User Guide. Retrieved June 17, 2024, from https://sentiwiki.copernicus.eu/web/s2-processing#S2Processing-L1Cprocessingbaseline
    [6.] Copernicus. (n.d.). L2A processing baseline. Sentinel-2 MSI User Guide. Retrieved June 17, 2024, from https://sentiwiki.copernicus.eu/web/s2-processing#S2Processing-L2Aprocessingbaseline
    [7.] Deschamps, P. Y., Duhaut, P., Rouquet, M. C., & Tanré, D. (1984). Demonstration, analysis, and correction of atmospheric effects on Landsat or SPOT multispectral data. Spectral signatures of objects in remote sensing, 709-722.
    [8.] Doxani, G., Vermote, E., Roger, J. C., Gascon, F., Adriaensen, S., Frantz, D., ... & Vanhellemont, Q. (2018). Atmospheric correction inter-comparison exercise. Remote Sensing, 10(2), 352.
    [9.] ESA. 2017. Sentinel-2A & 2B imagery metadata files.
    [10.] Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley Jr, R. D., Beckmann, T., ... & Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote sensing of environment, 194, 379-390.
    [11.] Forster, P., T. Storelvmo, K. Armour, W. Collins, J.-L. Dufresne, D. Frame, D.J. Lunt, T. Mauritsen, M.D. Palmer, M. Watanabe, M. Wild, and H. Zhang, 2021: The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 923–1054, doi: 10.1017/9781009157896.009.
    [12.] Fang, Z., Li, G., Hou, G., & Qiu, X. (2022). Light Management of Nanocellulose Films. In Emerging Nanotechnologies in Nanocellulose (pp. 179-209). Cham: Springer International Publishing.
    [13.] Grosso, N., & Paronis, D. (2012). Comparison of contrast reduction based MODIS AOT estimates with AERONET measurements. Atmospheric research, 116, 33-45.
    [14.] Goddard Space Flight Center. "Aerosol Robotic Network (AERONET) Homepage." Accessed June 20, 2024, from https://aeronet.gsfc.nasa.gov/.
    [15.] Gulev, S.K., P.W. Thorne, J. Ahn, F.J. Dentener, C.M. Domingues, S. Gerland, D. Gong, D.S. Kaufman, H.C. Nnamchi, J. Quaas, J.A. Rivera, S. Sathyendranath, S.L. Smith, B. Trewin, K. von Schuckmann, and R.S. Vose, 2021: Changing State of the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 287–422, doi: 10.1017/9781009157896.004.
    [16.] Hansen, J. E., & Travis, L. D. (1974). Light scattering in planetary atmospheres. Space science reviews, 16(4), 527-610.
    [17.] Haywood, J., & Boucher, O. (2000). Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Reviews of geophysics, 38(4), 513-543.
    [18.] Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2004). Aerosol properties over bright-reflecting source regions. IEEE transactions on geoscience and remote sensing, 42(3), 557-569.
    [19.] Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2006). Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE transactions on geoscience and remote sensing, 44(11), 3180-3195.
    [20.] Hsu, N. C., Jeong, M. J., Bettenhausen, C., Sayer, A. M., Hansell, R., Seftor, C. S., ... & Tsay, S. C. (2013). Enhanced Deep Blue aerosol retrieval algorithm: The second generation. Journal of Geophysical Research: Atmospheres, 118(16), 9296-9315.
    [21.] Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B. C., Li, R. R., & Flynn, L. (1997a). The MODIS 2.1-/spl mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE transactions on Geoscience and Remote Sensing, 35(5), 1286-1298.
    [22.] Kaufman, Y. J., Tanré, D., Remer, L. A., Vermote, E. F., Chu, A., & Holben, B. N. (1997b). Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. Journal of Geophysical Research: Atmospheres, 102(D14), 17051-17067.
    [23.] Kokhanovsky, A. A. (2009). Satellite aerosol remote sensing over land (Vol. 111, p. 24). G. Leeuw (Ed.). Berlin: Springer.
    [24.] Levy, R. C., Remer, L. A., & Dubovik, O. (2007). Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. Journal of Geophysical Research: Atmospheres, 112(D13).
    [25.] Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., & Eck, T. F. (2010). Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics, 10(21), 10399-10420.
    [26.] Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., & Hsu, N. C. (2013). The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 6(11), 2989-3034.
    [27.] Lin, H., Li, S., Xing, J., Yang, J., Wang, Q., Dong, L., & Zeng, X. (2021a). Fusing retrievals of high resolution aerosol optical depth from landsat-8 and sentinel-2 observations over urban areas. Remote Sensing, 13(20), 4140.
    [28.] Lin, H., Li, S., Xing, J., He, T., Yang, J., & Wang, Q. (2021b). High resolution aerosol optical depth retrieval over urban areas from Landsat-8 OLI images. Atmospheric Environment, 261, 118591.
    [29.] Mennis, J., & Guo, D. (2009). Spatial data mining and geographic knowledge discovery—An introduction. Computers, Environment and Urban Systems, 33(6), 403-408.
    [30.] NASA. 2017. Spectral Response of the Operational Land Imager In-Band, Band-Average Relative Spectral Response. Data downloads available. Cited at: https://landsat.gsfc.nasa.gov/preliminary-spectral-response-of-the-operational-land-imager-in-band-band-average-relative-spectral-response/
    [31.] Obregón, M. Á., Rodrigues, G., Costa, M. J., Potes, M., & Silva, A. M. (2019). Validation of ESA Sentinel-2 L2A aerosol optical thickness and columnar water vapour during 2017–2018. Remote Sensing, 11(14), 1649.
    [32.] Qiu, S., Zhu, Z., & He, B. (2019). Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery. Remote Sensing of Environment, 231, 111205.
    [33.] Retalis, A. (1999). Assessment of the distribution of aerosols in the area of Athens with the use of Landsat Thematic Mapper data. International Journal of Remote Sensing, 20(5), 939-945.
    [34.] Roy, D. P., Li, J., Zhang, H. K., Yan, L., Huang, H., & Li, Z. (2017). Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance. Remote Sensing of Environment, 199, 25-38.
    [35.] Sifakis, N., & Deschamps, P. Y. (1992). Mapping of air pollution using SPOT satellite data. Photogrammetric Engineering and Remote Sensing, 58, 1433-1433.
    [36.] Skakun, S., Roger, J. C., Vermote, E. F., Masek, J. G., & Justice, C. O. (2017). Automatic sub-pixel co-registration of Landsat-8 Operational Land Imager and Sentinel-2A Multi-Spectral Instrument images using phase correlation and machine learning based mapping. International Journal of Digital Earth, 10(12), 1253-1269.
    [37.] Tanré, D., Deschamps, P. Y., Devaux, C., & Herman, M. (1988). Estimation of Saharan aerosol optical thickness from blurring effects in Thematic Mapper data. Journal of Geophysical Research: Atmospheres, 93(D12), 15955-15964.
    [38.] U.S. Geological Survey. (2019). Landsat 8 Data Users Handbook. Retrieved June 20, 2024, from https://www.usgs.gov/media/files/landsat-8-data-users-handbook
    [39.] U.S. Geological Survey. (2024). Landsat 8-9 Collection 2 (C2) Level 2 Science Product (L2SP) Guide. Retrieved June 20, 2024, from https://www.usgs.gov/media/files/landsat-8-9-collection-2-level-2-science-product-guide
    [40.] Vermote, E. F., & Kotchenova, S. (2008). Atmospheric correction for the monitoring of land surfaces. Journal of Geophysical Research: Atmospheres, 113(D23).
    [41.] Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote sensing of environment, 185, 46-56.
    [42.] Wei, J., Huang, B., Sun, L., Zhang, Z., Wang, L., & Bilal, M. (2017). A simple and universal aerosol retrieval algorithm for Landsat series images over complex surfaces. Journal of Geophysical Research: Atmospheres, 122(24), 13-338.
    [43.] Zhu, Z., Wang, S., & Woodcock, C. E. (2015). Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote sensing of Environment, 159, 269-277.
    [44.] Zhong, B., Wu, S., Yang, A., & Liu, Q. (2017). An improved aerosol optical depth retrieval algorithm for moderate to high spatial resolution optical remotely sensed imagery. Remote Sensing, 9(6), 555.
    [45.] Zhang, H. K., Roy, D. P., Yan, L., Li, Z., Huang, H., Vermote, E., ... & Roger, J. C. (2018). Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote sensing of environment, 215, 482-494.
    [46.] 葉雨松. (2005). 空氣品質監測站介紹. 科儀新知, (145), 47-53.
    [47.] 張國恩. 2010. "MTSAT-1R 衛星資料在東亞沙塵暴監測及氣膠光學厚度反演之探討." 碩士, 太空科學研究所, 國立中央大學
    [48.] 王瑞源, 徐逸祥, 陳依婕, 樊先達, 黃昭雄, & 朱子豪. (2011). 整合空間及遙測分析於非法廢棄物棄置場之判釋. 航測及遙測學刊, 16(1), 45-61.
    [49.] 張淵翔. 2017. "地球同步衛星(Himawari-8)在逐時大氣氣膠光學厚度之反演與分析." 碩士, 遙測科技碩士學位學程, 國立中央大學
    [50.] 陳文姿. (2017.04.07). PM2.5現形記:1000個小盒子完成不可能的任務. 環境資訊中心. https://e-info.org.tw/node/204036. [訪問日期: 2024年7月27日]
    [51.] 黃淑倫, 林裕清, 蕭光佑, 林玠模, 紀妙青, & 陳玟諭. (2021). 嘉義縣空氣盒子與環保署空氣監測站 PM_ (2.5) 濃度差異之影響分析. 醫學與健康期刊, 10(1), 11-33.
    [52.] 空氣思庫AIRSCHOOL. (2022.03.30). 五分鐘快速理解,空污在臺灣我們呼吸的空氣是如何管理. https://airschool.com.tw/article/46. [訪問日期: 2024年7月27日]
    [53.] 環境保護署. (2024). https://airtw.moenv.gov.tw/

    QR CODE
    :::