跳到主要內容

簡易檢索 / 詳目顯示

研究生: 柯莉娜
Cholisina Anik Perwita
論文名稱: 印尼Semeru火山地區之火山顫動非線性動態性質分析
Analysis of Nonlinear Dynamical Properties of Volcanic Tremor Recorded at Semeru Volcano, Indonesia
指導教授: 柯士達
Konstantinos I. Konstantinou
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 72
中文關鍵詞: 震 顫非 線 性Semeru volcano
外文關鍵詞: Tremor, Nonlinear, Semeru volcano
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨 著 爆 發 性 噴 發 造 成 的 火 山 震 顫 是 無 所 不 在 的 , 而 在 印 尼 東 爪 哇 Semeru 火 山 也 發 現 一 樣 的 訊 號 。 為 了 探 究 顫 動 的 非 線 性 動 力 學 性 質 分 , 本 研 究 使 用 非 線 性 動 力 學 方 法 分 析從2009 年11 月 22 日 到 12 月 31 日 的 二 十 五 筆 火 山 地 震 數 據 。 由 Takens 的 延 遲 嵌 入 理 論 說 明 了 原 始 地 震 波 形 的 非 線 性 系 統 的 行 為 演 變 描 述 相 空 間 被 重 新 建 構 。 在 給 定 7 – 11 秒 的 延 遲 時 間 範 圍 內 , 重 建 的 延 遲 時 間 被 選 擇 用 來 檢 查 相 關 函 數 和 平 均 相 互 信 息 。 假 近 鄰 法 應 用 於 時 間 數 據 設 置 , 在 5 – 7秒 之 間 產 生 足 夠 的 嵌 入 維 度 。 在 鄰 近 軌 道 的 那 些 混 亂 狀 態 標 誌 的 指 數 歧 異 度 可 以 利 用 最 大 Lyapunov 指 數( MLE ) 被 量 化 。 MLE 被 用 來 檢 測 在 震 顫 信 號 上 數 量 的 泛 音 及 時 間 的 函 數 變 化 。 這 意 味 著 ,震 顫 源 在 幾 個 泛 音 頻 率 的 準 週 期 狀 態 及 小 的 MLEs (~ 0.013) 和 一 個 有 著 更 多 泛 音 的 混 亂 的 狀 態 及 較 大 的 MLEs (up to 0.039) 之 間 波 動 著 。 吸 引 維 度 的 估 計 是 使 用 由 Grassberg Procaccia 所 提 出 的 相 關 演 算 法 來 完 成 的 。相 關 維 度 的 事 件 等 於 或 小 於 2 時 , 有 可 能 作 為 在 相 空 間 中 的 吸 引 環 面 , 然 而 對 於 相 關 維 度 事 件 大 於 2 的 情 況 中 , 軌 跡 不 會 靠 近 圓 環 , 因 此 , 對 於 一 些 沿 著 圓 環 的 隨 意 較 大 的 資 料 數 據 , 就 可 以 探 究 較 大 面 積 的 相 空 間 。 實 體 觀 測 說 明 微 震 源 涉 及 氣 體 從 噴 泉 堵 塞 物 從 一 個 或 多 個 裂 隙 中 溢 出 。 在 測 定 震 顫 特 徵 上 , 堵 塞 物 的 性 質 扮 演 了 一 個 非 常 重 要 的 角 色。


    Volcanic tremor that follows explosive eruptions is an ubiquitous signal found in several volcanoes and also found at Semeru volcano, East Java, Indonesia. Twenty five episodes of volcanic tremor data from 22 November – 31 December 2009 have been analyzed using methods from the discipline of nonlinear dynamics in order to investigate their nonlinear dynamical properties. The phase space which describes the evolution of the behavior of nonlinear system was reconstructed from the original tremor seismograms using the delay embedding theorem suggest by Takens. The delay time used for reconstruction was selected after examining the autocorrelation function and average mutual information giving delay time in the range of 7-11. The false nearest neighbor method was applied to time data set yielding sufficient embedding dimension between 5-7. Exponential divergence of nearby orbits is the hallmark of chaotic behavior and was quantified by the maximal Lyapunov exponent (MLE). MLEs were found to vary as a function of the number of overtones in tremor signal and as a function of time. This implies that the tremor source fluctuates between a quasi-periodic state with few overtone frequencies and small MLEs (~0.013) and a chaotic one with more overtones and larger MLEs (up to 0.039). Estimation of attractor dimension was done using the correlation algorithm suggested by Grassberg and Procaccia. The events with the correlation dimension equal to or less than 2 likely have a torus as an attractor in the phase space. For events that have correlation dimension larger than 2, the trajectory is not bounded close to the torus and therefore it can explore a larger area of the phase space. No correlation dimension for some events can be explained due to dynamical correlations that persist for arbitrarily large data sets along a torus. Physical observations indicate that the tremor source involved gas escaping from the plug of conduit through one or more fractures. The properties of the plug probably played a very important role in determining the characteristics of the tremor signal.

    摘要 I ABSTRACT II ACKNOWLEDGEMENTS III TABLE OF CONTENTS IV LIST OF FIGURES V LIST OF TABLES VI CHAPTER 1 INTRODUCTION 1 1.1 NONLINEAR DYNAMICS AND CHAOS 1 1.2 VOLCANIC TREMOR 2 1.3 SEMERU VOLCANO 3 1.4 STRUCTURE OF THIS THESIS 4 CHAPTER 2 ESTIMATION OF EMBEDDING PARAMETERS 13 2.1 DATA SELECTION AND SPECTRAL ANALYSIS 13 2.2 PHASE SPACE RECONSTRUCTION 14 2.3 ESTIMATION OF DELAY TIME (Τ) 15 2.4 ESTIMATION OF EMBEDDING DIMENSION (M) 16 CHAPTER 3 MAXIMAL LYAPUNOV EXPONENT AND CORRELATION DIMENSION 28 3.1 MAXIMAL LYAPUNOV EXPONENT 28 3.1.1 APPLICATION TO TREMOR DATA 29 3.2 CORRELATION DIMENSION 29 3.1.1 APPLICATION TO TREMOR DATA 31 3.3 TEMPORAL VARIATION OF DYNAMICAL PROPERTIES 32 CHAPTER 4 DISCUSSION AND CONCLUSIONS 45 4.1 ERUPTION CHRONOLOGY AND VISUAL OBSERVATIONS 45 4.2 PHYSICAL MECHANISM OF TREMOR AND ITS NONLINEAR DYNAMICS 46 4.3 CONCLUSIONS 47 REFERENCES 57

    Abarbanel, H.D.I., 1996. Analysis of observed chaotic data. New York: Springer.
    Benoit, J. & McNutt, S.R., 1997. New constraints on source processes of volcanic tremor at Arenal volcano, Costa Rica, using broadband seismic data. Geophys. Res. Lett., (24), pp.449-52.
    Cannata, A. et al., 2010. New insights into banded tremor from the 2008–2009 Mount Etna eruption. J. Geophys. Res., 115 (B12318).
    Chouet, B. & Shaw, H.R., 1991. Fractal properties of tremor and gas piston event observed at Kilauea volcano, Hawaii. J. Geophys. Res., 96 No. B6, pp.10177-89.
    DeLauro, E. et al., 2008. Model for high-frequency strombolian tremor inferred by wavefield decomposition and reconstruction of asymptotic dynamics. J. Geophys. Res, 113(B02302).
    Drazin, P.G., 1994. Nonlinear Systems. New York: Cambridge University Press.
    Fraser, A.M. & Swinney, H.L., 1986. Independent coordinate for strange attractor from mutual information. Phys. Rev, (33), pp.1134-40.
    Frede, V. & Mazzega, P., 1999. Detectability of deterministic nonlinear processes in earth rotation time series I.Embedding. Geophys. J. Int., (137), pp.551-64.
    Fujita, E., Ida, Y. & Oikawa, J., 1995. Eigen oscillation of a fluid sphere and source mechanism of harmonic volcanic tremor. J. Volc. Geoth. Res., (69), pp.365-78.
    Galka, A. & Pfister, G., 2003. Dynamical correlations on reconstructed invariant densities and their effect on correlation dimension estimation. Journal of Bifurcation and Chaos, 13(3), pp.723-32.
    Godano, C., Cardaci, C. & Privitera, E., 1996. Intermittent behaviour of volcanic tremor at Mt. Etna. Pure Appl. Geophys., (147), pp.729-44.
    Grassberger, P. & Procaccia, I., 1983. Characterisation of Strange Attractors. Phys. Rev. Lett, (50), pp.346–49.
    Hagerty, M.T., Schwartz, S.Y., Garcés, M.A. & Prottid, M., 2000. Analysis of seismic and acoustic observations at Arenal volcano, Costa Rica. J. Volc. Geoth. Res., 101(1-2), pp.27-65.
    Hegger, R., Kantz, H. & Schriber, T., 1999. Practical Implementation of non-linear time series methods : The TISEAN Package. CHAOS, 9(413).
    Hellweg, M., 2000. Physical models for the source of Lascar’s harmonic tremor. J. Volc. Geoth. Res., (101), pp.183-98.
    Jedynak, A., Bach, M. & Timmer, J., 1994. Failure of dimension analysis in a simple five dimensional system. Phys. Rev. E, 50(3), pp.1770-80.
    Johnson, J.B. & Lees, J.M., 2000. Plug and chugs-seismic and accoustic observation of degassing explotion at Karymsky, Russia and Sangay, Ecuador. J. Volc. Geoth. Res., (101), pp.67-82.
    Julian, B.R., 1994. Volcanic tremor : Nonlinear excitation by fluid flow. J. Geophys. Res., (99), pp.11859-77.
    Julian, B.R., 2000. Period doubling and other nonlinear phenomena in volcanic earthquake and tremor. J. Volc. Geoth. Res., (101), pp.19-26.
    Kantz, H. & Schreiber, T., 2004. Nonlinear Time Series Analysis. New York: Cambridge University Press.
    Kennel, M.B., Brown, R. & Abarbanel, H.D.I., 1992. Determining embedding dimension for phase space reconstruction using a geometrical construction. Phys. Rev, (45), pp.3402-11.
    Konstantinou, K.I., 2002. Deterministic nonlinear source processes of volcanic tremor signals accompanying the 1996 Vatnajökull eruption, Central Iceland. Geophys. J. Int., (148), pp.663-75.
    Konstantinou, K.I. & Lin, C.H., 2004. Nonlinear time series analysis of volcanic tremor events recorded at Sangay Volcano, Ecuador. Pure Appl. Geophys., (161), pp.145-63.
    Konstantinou, K.I. & Schlindwein, V., 2003. Nature, wavefield properties and source mechanism of volcanic tremor : a review. J. Volc. Geoth. Res., (119), pp.161-87.
    Lees, J.M., Goordeev, E.I. & Ripepe, M., 2004. Explosion and periodic tremor at Karymsky volcano, Kamchatka, Russia. Geophys. J. Int, (158), pp.1151-67.
    Lesage, P. et al., 2006. Complex behaviour and source model of the tremor at Arenal volcano, Costa Rica. J. Volc. Geoth. Res., (157), pp.49-59.
    Lorenz, E., 1963. Deterministic Nonperiodic Flow. J. Atmos. Sci., (20), pp.130-41.
    Maryanto, S., Iguchi, M. & Tameguri, T., 2008. Constraints on the source mechanism of harmonic tremors based on seismological, ground deformation, and visual observations at Sakurajima volcano, Japan. J. Volc. Geoth. Res., (170), pp.198-217.
    McNutt, S.R., 1992. Volcanic Tremor. In Nierenberg, W.A. Encyclopedia of Earth System Science. Academic Press, Inc. pp.417-25.
    McNutt, S.R., 2002. Volcano seismology and monitoring for eruptions, International handbook of earthquake and engineering seismology. International Assoc. Seismol. & Phys. Earth’s Interior, Committee on education, 81A, pp.383-406.
    Mulyana, I., 2006. Characteristics of harmonics tremor at Semeru volcano, East Java, Indonesia. JICA Final Report of Volcanology and comprehensive Sediment-related Disaster Prevention Measures J05-00876.
    Neuberg, J., Luckett, R., Baptie, B. & Olsen, K., 2000. Models of tremor and low frequency earthquake swarms on Montserrat. J. Volc. Geoth. Res., (101), pp.83-104.
    Rosenstein, M.T. & J.J. Collins, C.J.D., 1993. A Practical method for the calculating largest Lyapunov Exponent from small data set. Physica D, 65, pp.117-34.
    Ruelle, 1990. Deterministic Chaos : The Science and the Fiction. Proc. Roy. Soc. London, A427, pp.241-48.
    Sauer, T., York, J.A. & Casdagli, M., 1991. Embedology. J. Stat. Phys, (65), p.579.
    Schlindwein, V., 1994. Spektralanalyse harmonischer Tremorsignale am Vulkan Semeru, Indonesien. Thesis. Ludwig-Maximilians Universität, Munich.
    Schlindwein, V., Wassermann, J. & Scherbaum, F., 1995. Spectral analysis of harmonic tremor signal at Mt. Semeru volcano, Indonesia. Geophys. Res. Lett., 22(13), pp.1685-88.
    Siswowidjojo, S., Sudarsono, U. & Wirakusumah, A., 1997. The threat of hazard in the Semeru volcano region in East Java, Indonesia. Journal of Asian Earth Sciences, 15, pp.185-94.
    Takens, F., 1981. Detecting Stange Attractor in Turbulence, Lecture Note in Math. Nem York: Springer.
    Takens, F., 1985. On the Numerical Determination of the Dimension of an Attractor. In H.W.B.a.F.T. B. L. J. Braaksma, ed. Dynamical Systems and Bifurcations, Lecture Notes in Math. Heidelberg-New York: Springer.
    Theiler, J., 1988. Lacunarity in a best estimator of fractal dimension. Phys. Lett. A, 135(195).
    Theiler, J., 1990. Estimating Fractal Dimension. J. Opt. Soc. Am., (7), pp.1055-73.
    Thouret, J.-C. et al., 2007. Volcanic hazard at Mount Semeru, East Java (Indonesia), with emphasis on lahars. Bulletin of Volcanology, (70), pp.221-44.
    Wilkinson, M.H.F., 1997. Nonlinear dynamics, chaos-theory, and the "sciences of complexity": their relevance to the study of the interaction between host and microflora. In P. J. Heidt, V.R.a.D.v.d.W., ed. Old Herborn University Seminar Monograph 10: New Antimicrobial Strategies. Herborn-Dill, 1997. Herborn Litterae.

    QR CODE
    :::