跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅彥翔
Yen-Hsiang Lo
論文名稱: 研究非線性功率放大器的線性化預失真技術
Study On Linearization Methods For Predistortion Of Nonlinear Power Amplifiers
指導教授: 張大中
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 80
中文關鍵詞: 正交分頻多工直接學習架構間接學習架構預失真技術內爾德 - 米德最大期望值高斯-牛頓
外文關鍵詞: OFDM, DLA, ILA, predistortion, Nelder-Mead, expectation maximization, Gaussian-Newton
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於正交分頻多工(Orthogonal Frequency Division Multiplexing, OFDM)訊號具有較高的峰值對均值功率比(Peak-to-Average Power Ratio, PAPR),容易受到功率放大器非線性的影響,而產生訊號的失真,導致系統效能降低。在過去的文獻中,使用預失真技術用於補償非線性功率放大器造成的失真為主要的研究方向。在本篇論文以有記憶性多項式模型當作功率放大器,並利用有記憶性多項式作為預失真器的模型,並利用有記憶性多項式作為預失真器的模型,提出NM單純型搜索法 (Nelder and Mead Simplex Search Method)直接搜索預失真參數,以及使用高斯-牛頓線性化法(Gaussian-Newton method)推導出有記憶性多項式模型下的演算法,最後提出最大期望値法(Expectation Maximization)結合NM單純型搜索法,並且分別利用直接學習架構(Direct Learning Architecture,DLA)以及間接學習架構(Indirect Learning Architecture,ILA)找到預失真的參數,最後本篇論文比較補償非線性功率放大器演算法的效率。


    The characteristic of high peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals is well known to seriously degrade system performance. The predistortion (PD) technique for compensating the nonlinear power amplifiers (PAs) has become a main approach in the literature. In this paper, we consider a memory polynomial model for the PAs. Taking into account the direct learning and indirect learning structures for the PD, we study some algorithms for the PD coefficients, including the expectation maximum (EM) algorithm, Gaussian-Newton linearization method, and the Nelder-Mead simplex search method. In this thesis, the algorithm efficiency and computational complexity are compared by applying those methods for the PA compensation problem.

    中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要 . . . . . . . . . . . . . . . . . . . . . . . iii 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . .i 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . ii 表目錄 . . . . . . . . . . . . . . . . . . . . . . . .iii 第 1 章序論 . . . . . . . . . . . . . . . . . . . . . . 1 1.1 前言 . . . . . . . . . . . . . . . . . . . . . . . .1 1.2 章節架構 . . . . . . . . . . . . . . . . . . . . . .5 第 2 章系統模型 . . . . . . . . . . . . . . . . . . . . 7 2.1 傳輸訊號模型 . . . . . . . . . . . . . . . . . . . . 7 2.2 功率放大器 (Power Amplifier) . . . . . . . . . . . .10 2.2.1 無記憶性多項式模型 (Memoryless Polynomial)) . . . 11 2.2.2 有記憶性多項式模型 (Memory Polynomial)) . . . . . 11 2.3 預失真線性化技術 (Predistortion linearization) . . .12 第 3 章預失真線性化演算法 . . . . . . . . . . . . . . . .16 3.1 NLMS . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1 DLA 使用 NLMS 演算法更新係數步驟 . . . . . . . . . 18 3.1.2 ILA 使用 NLMS 演算法更新係數步驟 . . . . . . . . . 19 3.2 RLS . . . . . . . . . . . . . . . . . . . . . . . .21 3.2.1 DLA 使用 RLS 演算法更新係數步驟如下 . . . . . . . .21 3.2.2 ILA 使用 RLS 演算法更新係數步驟如下 . . . . . . . .23 3.3 單純型搜索法 (Nelder and Mead Simplex Search Method)24 3.4 最大期望演算法 . . . . . . . . . . . . . . . . . . .29 3.4.1 期望步驟 (E-step) . . . . . . . . . . . . . . . .31 3.4.2 最大化步驟 (M-step) . . . . . . . . . . . . . . .33 3.5 高斯-牛頓法 (Gauss-Newton) . . . . . . . . . . . . .36 3.5.1 高斯-牛頓法利用 DLA . . . . . . . . . . . . . . . 36 3.5.2 高斯-牛頓法利用 ILA . . . . . . . . . . . . . . . 39 第 4 章系統模擬與結果分析 . . . . . . . . . . . . . . . .41 4.1 星座點比較 . . . . . . . . . . . . . . . . . . . . .43 4.2 誤差向量幅度 . . . . . . . . . . . . . . . . . . . .46 4.3 演算法收斂曲線比較 . . . . . . . . . . . . . . . . .48 4.4 功率頻譜密度 . . . . . . . . . . . . . . . . . . . .56 第 5 章結論 . . . . . . . . . . . . . . . . . . . . . . 60 附錄 A:Gauss-Newton 微分推導. . . . . . . . . . . . . .61 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . .64

    [1] J. Armstrong, “Ofdm for optical communications,” Journal of Lightwave Technology, vol. 27, no. 3, pp. 189–204, Feb 2009.
    [2] R. Raich, “Nonlinear system identification and analysis with applications to power amplifier modeling and power amplifier predistortion,” Ph.D. dissertation, Georgia Institute of Technology, 2004.
    [3] P. B. Kenington, High Linearity RF Amplifier Design, 1st ed. Norwood, MA, USA: Artech House, Inc., 2000.
    [4] M. Gudmundson and P. O. Anderson, “Adjacent channel interference in an ofdm system,” in Vehicular Technology Conference, 1996. Mobile Technology for the Human Race., IEEE 46th, vol. 2, Apr 1996, pp. 918–922 vol.2.
    [5] J. Pochmara, R. Mierzwiak, and K. Werner, “A combined adaptive predistortion scheme with input back-off,” in Mixed Design of Integrated Circuits Systems, 2009. MIXDES ’09. MIXDES-16th International Con-
    ference, June 2009, pp. 583–587.
    [6] A. J. Zozaya and E. Bertran, “On the performance of cartesian feedback and feedforward linearization structures operating at 28 ghz,” IEEE Transactions on Broadcasting, vol. 50, no. 4, pp. 382–389, Dec 2004.
    [7] K.-P. Chan and K. K. M. Cheng, “Novel dsp algorithms for adaptive feed-forward power amplifier design,” in Microwave Symposium Digest, 2003 IEEE MTT-S International, vol. 2, June 2003, pp. 1323–1326 vol.1.
    [8] S. Chung, J. W. Holloway, and J. L. Dawson, “Open-loop digital predistortion using cartesian feedback for adaptive rf power amplifier linearization,” in 2007 IEEE/MTT-S International Microwave Symposium, June 2007, pp. 1449–1452.
    [9] C.-H. Lin, H.-H. Chen, Y.-Y. Wang, and J.-T. Chen, “Dynamically optimum lookup-table spacing for power amplifier predistortion linearization,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 5, pp. 2118–2127, May 2006.
    [10] J. K. Cavers, “Optimum table spacing in predistorting amplifier linearizers,” IEEE Transactions on Vehicular Technology, vol. 48, no. 5, pp. 1699–1705, Sep 1999.

    [11] L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “Memory polynomial predistorter based on the indirect learning architecture,” in Global Telecommunications Conference, 2002.
    GLOBECOM ’02. IEEE, vol. 1, Nov 2002, pp. 967–971 vol.1.
    [12] Z. Zeng, X. Sun, R. Lv, and Z. Yang, “Open-loop digital baseband predistortion based on polynomials,” in Computer Science and Information Engineering, 2009 WRI World Congress on, vol. 6, March 2009, pp. 194–197.
    [13] S. Choi, E. R. Jeong, and Y. H. Lee, “A direct learning structure for adaptive polynomial-based predistortion for power amplifier lineariza- tion,” in 2007 IEEE 65th Vehicular Technology Conference - VTC2007- Spring, April 2007, pp. 1791–1795.
    [14] Z. Li, J. Kuang, and N. Wu, “Direct learning predistorter with a new loop delay compensation algorithm,” in Vehicular Technology Conference (VTC Spring), 2012 IEEE 75th, May 2012, pp. 1–5.
    [15] L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Transactions on Communications, vol. 52,no. 1, pp. 159–165, Jan 2004.
    [16] M. Y. Cheong, S. Werner, M. J. Bruno, J. L. Figueroa, J. E. Cousseau, and R. Wichman, “Adaptive piecewise linear predistorters for nonlinear power amplifiers with memory,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 7, pp. 1519–1532, July 2012.
    [17] L. Ding, R. Raich, and G. T. Zhou, “A hammerstein predistortion linearization design based on the indirect learning architecture,” in Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International Conference on, vol. 3, May 2002, pp. III–2689–III–2692.
    [18] S. S. Haykin, Adaptive filter theory. Pearson Education India, 2008.
    [19] S. Haykin and B. Widrow, Least-mean-square adaptive filters. John Wiley & Sons, 2003, vol. 31.
    [20] E. J. Wyers, M. B. Steer, C. T. Kelley, and P. D. Franzon, “A bounded and discretized nelder-mead algorithm suitable for rfic calibration,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 7, pp. 1787–1799, July 2013.
    [21] A. Ravindran, G. V. Reklaitis, and K. M. Ragsdell, Engineering optimization: methods and applications. John Wiley & Sons, 2006.
    [22] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the nelder–mead simplex method in low dimensions,” SIAM Journal on optimization, vol. 9, no. 1, pp. 112–147, 1998.
    [23] R. W. Wedderburn, “Quasi-likelihood functions, generalized linear models, and the gauss¡xnewton method,” Biometrika, vol. 61, no. 3, pp. 439–447, 1974.
    [24] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.
    [25] C. Zhang, Z. Xiao, X. Peng, D. Jin, and L. Zeng, “Non-data-aided distorted constellation estimation and demodulation for mmwave communications,” in 2012 IEEE International Conference on Communications (ICC), June 2012, pp. 4696–4701.
    [26] J. P. Vila and P. Schniter, “Expectation-maximization gaussian-mixture approximate message passing,” IEEE Transactions on Signal Processing, vol. 61, no. 19, pp. 4658–4672, Oct 2013.
    [27] G. McLachlan and T. Krishnan, The EM algorithm and extensions. John Wiley & Sons, 2007, vol. 382.
    [28] S. H. Nam, J. S. Yoon, and H. K. Song, “Em-based low complexity channel estimation for ofdm system,” IEEE Transactions on Consumer Electronics, vol. 54, no. 2, pp. 425–430, May 2008.
    [29] Y. Ding, H. Ohmori, and A. Sano, “Adaptive predistortion for high power amplifier with linear dynamics,” in Circuits and Systems, 2004. MWSCAS ’04. The 2004 47th Midwest Symposium on, vol. 3, July 2004, pp. iii–121–4 vol.3.
    [30] C. Rapp, “Effects of HPA-nonlinearity on a 4-DPSK/OFDM-signal for a digital sound broadcasting signal,” in ESA Special Publication, ser. ESA Special Publication, P. S. Weltevreden, Ed., vol. 332, Oct. 1991.
    [31] D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of rf power amplifiers,” IEEE Transactions on Signal Processing, vol. 54, no. 10, pp. 3852–3860, Oct 2006.
    [32] P. Gilabert, G. Montoro, and E. Bertran, “On the wiener and hammerstein models for power amplifier predistortion,” in 2005 Asia-Pacific Microwave Conference Proceedings, vol. 2, Dec 2005, pp. 4 pp.–.
    [33] A. Y. Kibangou and G. Favier, “Wiener-hammerstein systems modeling using diagonal volterra kernels coefficients,” IEEE Signal Processing Letters, vol. 13, no. 6, pp. 381–384, June 2006.
    [34] C. Eun and E. J. Powers, “A new volterra predistorter based on the indirect learning architecture,” IEEE Transactions on Signal Processing, vol. 45, no. 1, pp. 223–227, Jan 1997.
    [35] L. Ding, “Digital predistortion of power amplifiers for wireless applications,” Ph.D. dissertation, Georgia Institute of Technology, 2004.
    [36] D. Zhou and V. DeBrunner, “A novel adaptive nonlinear predistorter based on the direct learning algorithm,” in Communications, 2004 IEEE International Conference on, vol. 4, June 2004, pp. 2362–2366 Vol.4.

    QR CODE
    :::