跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃朝暉
Chao-Hui Huang
論文名稱: X射線與電子能量作用下星際冰晶的化學衍化
Chemical Evolution of Interstellar Ice Mantles Under X-rays and Electrons Processing
指導教授: 易台生
陳俞融
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 238
中文關鍵詞: 一氧化碳星際冰晶原恆星原行星盤複雜有機化合物X射線電子
外文關鍵詞: Carbon monoxide, water, ammonia, interstellar ice, protostars, protoplanetary discs, complex organic molecules, X-rays, electrons
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 天文觀測發現星際空間不是空無一物。通常星際區域的特徵是低密度和低溫度,儘管在某些位置可能會出現極高的密度和溫度。星際介質暴露於各種輻射源中,例如宇宙射線和恆星光(紫外線和X射線),並且包含磁場。

    在壓力高於一般星際物質(稱為彌散雲或密集分子雲)平均壓力的區域中,漂浮著許多簡單分子(如氫氣或是一氧化碳),擁有足以被現代設備所量測到的濃度。這些分子因細小且由矽酸鹽和碳質所構成的固態粒子(稱為星際塵埃)—稀疏地填充星際物質內。塵埃遮蔽部分恆星光使得分子能穩定存在。因此,在分子雲內部的分子能夠避免紫外線的光解並擁有較長壽命。複雜的化學物質也因此能夠在分子雲中形成。然而,許多的研究指出氫分子只能透過在塵埃顆粒的表面上的反應形成,無法在氣相反應中取得。

    黑暗星雲,恆星光被高度屏蔽的區域,塵埃上被氣相沉積的冰幔所覆蓋。與觀測的結果相符,在高密度區域、大質量核、小質量核、和恆星形成的區域中,許多化學物質如水、一氧化碳、二氧化碳、甲醇、甲醛、甲烷及氨等,以保存在塵埃上的形式被觀測到。擁有更複雜結構的分子如乙醇、醋酸及乙醇醛等也在這些高密度的區域中觀測到相對較高的含量。這些分子包含了重要的有機元素 (氫、碳、氮及氧) 是主要的有機物質,其中有些被天文學家認為與天文生物學有關。這些大型天文分子,被稱為複雜有機分子。這些分子形成的基本概念被認為是透過簡單的氫化分子如甲醛、甲醇及氨在冰冷的塵埃顆粒表面上所形成。然後透過固態化學反應大幅的提升化學複雜度。

    恆星是由分子雲的重力坍縮所形成。在最初的階段,通過吸積和射流的共同作用,新生恆星(稱為原恆星)逐漸將坍塌的星雲轉變為稱為原行星盤的平盤,因為它是行星形成的原料。

    本論文主要以天文學實驗,研究在星際區域和星周盤區域中,電子和X射線的能量的作用下,簡單的星際冰晶可能如何形成複雜有機分子,並且了解複雜性如何在冰晶中提升並透過非熱效應脫附貢獻至氣相中。

    本研究中所呈現的部分實驗在新建置的實驗系統上所進行。其命名為星際能量作用系統或以英文稱之為Interstellar Energetic-Process System,為一超高真空系統。建置目的是研究不同輻射源作用下星際冰晶的演化。電子束由電子槍提供,而X射線則由新竹同步輻射中心八號光束線(BL08B)提供。同步輻射光源有著高亮度及連續光譜的優點是良好的光源設施。X射線光譜覆蓋250至1250電子伏特,其光譜與年輕且與太陽相同型態的恆星X射線光譜相似。在電子束的研究中,我使用帶有150至1000電子伏特的電子。這個能量範圍相似於金牛座T星所發射的X射線或是宇宙射線與物質作用後所產生的主要電子能量相近。此論文中使用三種冰晶樣本,分別是純一氧化碳冰晶、加入水的雙成分混合冰晶及加入氨的三成分混合冰晶。冰晶樣本分別進行電子束及X射線的研究,除三元樣本暫時只對X射線完成相關研究。

    純一氧化碳冰晶與加入水的混合冰晶在X射線及電子束的作用下皆生成了相同的化學物質。冰晶在X射線的照射下同時伴隨著光子與粒子(電子)的作用。X射線被原子吸收後游離並發射內殼層的電子(稱之為光電子或是主要電子)。主要電子留下的空缺由高能階的電子所充填,並發射出第二顆電子(歐傑電子)。這兩種電子透過與物質的作用不斷的釋放能量到物質中並產生瀑布般的二次電子,驅動著冰晶內的化學反應。另一方面,電子束的電子能夠透過游離或是激發分子。當電子所攜帶的能量足夠高時,能像X射線一般游離原子的內殼層電子,但此狀況不在本論文探討的能量範圍內。如前面X射線的例子所述,電子透過與物質的交互作用釋放能量並產生大量二次電子。因此不論在X射線或是電子束的照射下,冰晶內的化學反應皆由二電子所推動。

    在一氧化碳與水的混合冰晶中因為豐富的氫原子與羥基,一氧化碳的氫化反應 (例如生成甲醛與甲醇)與氧化反應(例如二氧化碳)是主要的反應。X射線照射下的三成分混合冰晶產生許多與生命可能的來源相關的有機化合物,如異氰酸、甲醯胺及最簡單的氨基酸,甘胺酸。X射線的照射過程中,偵測到許多質量從冰晶上脫附即使溫度在11 K遠低於這些大質量的揮發溫度。二氧化碳在所有的冰晶樣本及兩種輻射源的照射下,都能觀察到脫附。在電子束的研究中發現純一氧化碳冰晶所產生的二氧化碳大部分參與脫附,參入水後的冰晶則參與的比例下降,此比例與入射電子能量有關。

    三成分冰晶(水:一氧化碳:氨)在X射線照射下,四極質譜儀偵測到許多與複雜有機分子相符質量的光脫附,像是異氰酸甲酯、甲酸及甲醯胺。若是這些相應的質量真的為複雜有機分子,這些分子化學起源的爭議將會傾向以固態反應來解釋。


    Astronomical observations show that the interstellar space is not empty. Typically, interstellar regions are characterized by low density and low kinetic temperature, although at some locations extreme densities and temperatures can occur. The interstellar medium is exposed to various radiation sources, such as cosmic rays and starlight (ultraviolet and X-rays), and contains magnetic fields.

    In regions over-pressured with respect to the average pressure of the general interstellar medium (called diffuse and dense molecular clouds) are present a number of free floating simple molecules (such H2 and CO), able to reach concentrations high enough to be detected. These molecules owe their existence to tiny solid particles (the so called cosmic dust) ~\textendash~ sparsely populating the interstellar medium ~\textendash~ composed by silicate and carbonaceous materials. The primary role of dust in molecular survival consist in the (partial) shield of clouds from ambient starlight. Therefore, molecules in cloud interiors are protected from photodissociation by UV starlight and have a long lifetime. A complex chemistry is therefore able to build up in cloud interiors. However, hydrogen molecules cannot be formed by gas-phase reactions and are formed in reactions at the surfaces of dust grains, as demonstrated by a number of appropriate laboratory experiments.

    In highly shielded regions (dark clouds) where the starlight is largely excluded, dust grains should be coated with icy mantles of condensed gas. This is indeed what is observed in very dense regions, in high- and low-mass cores in star-forming regions, where water, carbon monoxide and dioxide, methanol, formaldehyde, methane, ammonia, and other species are observe to be resident on dust grains. More complex species, such as ethanol, acetic acid, and glycolaldehyde, are detected at relatively high abundances in these regions. These molecules, composed by the most important biogenic elements (hydrogen, carbon, nitrogen, and oxygen) are mainly organic species, and are considered by some astrochemists to be related to the emerging subject of astrobiology. These larger astronomical molecular species are called complex organic molecules, or COMs, for short. The basic idea for the formation of these molecules is that simple hydrogenated molecules like H2CO, CH3OH and NH3 are formed on the cold grain surfaces. Then, the chemical complexity can be dramatically enhanced, through some form of solid-state chemistry.

    Stars are formed by the gravitational collapse of molecular clouds. In the very initial phases, through the combined action of accretion and jet flows, the nascent star (called protostar), gradually transforms the collapsing cloud into a flat disk called the protoplanetary disk, because it constitutes the raw material from which planets will form.

    In this work, I will perform laboratory experiments, investigating how simple interstellar ices may form COMs under the transforming action of energetic sources characteristic of interstellar and circumstellar regions, electrons and X-rays, and I shall also address the specific problem on how chemical complexity arising in the ices could be ejected into the gas-phase without thermal desorption.

    The experiments presented in this dissertation have been performed with the new Interstellar Energetic-Process System, an ultra-high vacuum facility specifically designed for the study of the irradiation of interstellar and circumstellar ices. Electrons are produced trough an electron gun, while X-rays have been collected at the at National Synchrotron Radiation Research Center. Synchrotron light sources are ideal because of their high intensity and wide wavelength coverage. The X-ray spectrum ranges between 250 and 1250 eV, with a shape roughly resembling the X-ray spectrum of a young solar-type star. In the electron radiolysis I use energies from 150 to 1000 eV. Such a range is similar to the primary electron spectrum produced by X-rays emitted by T-Tauri stars or cosmic-rays interacting with the gaseous interstellar medium. In this thesis I study three kinds of samples, pure CO ices, a binary mixtures of H2O:CO, and a ternary mixture of H2O:CO:NH3. In the first cases, irradiation has been performed with both X-rays and electrons, while the ternary mixture is irradiated with just X-rays.

    Pure CO ice and H2O:CO ice mixture irradiated by X-rays and electrons produce the same chemical species. X-rays irradiation of ices is the result of photons and particles processing. The absorption of X-rays results in the ionization of an inner shell of atoms composing a molecule, in which a photo-electron (the primary electron) is ejected. As an electron from the higher energy levels fills the core vacancy a second electron, the Auger electron, is ejected into the continuum. These two electrons will deposit and degrade their energies interacting with the ice materials, and creating a cascade of secondary electron that drives the chemistry in the ices. On the other hand, in the electron radiolysis, electrons impinging on the ice can excite and ionize the molecules or if sufficiently energetic can (not the case in our experiments), as X-rays, ionize inner-shell electrons of the atoms in the molecules. As in the previous case involving X-rays, the electrons slow down loosing their energy interacting with the ice, and producing secondary electrons. Therefore, the chemistry promoted in X-ray irradiation or electron radiolysis are mainly promoted by the secondary electrons.

    In H2O:CO ice mixture, because of the rich environment in H atoms and OH radicals, hydrogenation of carbon monoxide (e.g., formaldehyde, and methanol) and oxidation (e.g., carbon dioxide) are the main reactions. X-rays irradiated H2O:CO:NH3 produces many organic compounds of prebiotic relevance, such as isocyanic acid, formamide, and the simplest amino acid, glycine.

    During X-rays irradiation, several masses have been observed to leave the ice, despite the very low ice temperature, 11 K, well below its sublimation temperature. The desorption of carbon dioxide have been detected in all samples, and for all radiolysis. In electron irradiated CO ice experiments, it is found that almost all of the CO2 formed in the ice desorbes, while only partial CO2 desorption occurred in water mixtures. The desorbing ice fraction is related to the energy of the impinging electrons.

    In X-rays irradiated H2O:CO:NH3 ice mixtures, QMS detections are consistent with photo-desorption of COMs such as methyl isocyanate, formic acid, and formamide. If this would be actually the case, the controversy on the chemical origin of such species would be definitely solved in favor of solid state reaction channels.

    摘要 ix Abstract xi Acknowledgement xv Contents xvii List of Figures xxi List of Tables xxix I Interstellar Space and Ice Analogs 1 1 Introduction 3 1.1 Unveiling the nature of the space between the stars 3 1.2 The Structure of the interstellar medium 5 1.2.1 The Hot Ionized Medium 6 1.2.2 The Warm Ionized Medium 6 1.2.3 The neutral warm and cold media 7 1.2.4 Molecular interstellar medium 7 1.2.5 Hot and warm cores. 9 1.3 Dust and molecules in the interstellar medium 9 1.4 Stars, discs and planets 12 1.4.1 Low­mass star formation. 12 1.4.2 The evolution of solar­type environments 13 1.5 Energetic radiation sources in space 14 1.5.1 UV radiation. 14 1.5.2 X­rays 15 1.5.3 Cosmic rays 16 1.5.4 Electrons 16 1.6 Laboratory ice analogs 17 2 Experimental set­up and experiments 21 2.1 Experimental facility 21 2.1.1 UHV chamber 23 2.1.2 Pre­mixing system 26 2.1.3 Detection system. 26 2.1.4 IPS 26 2.2 Laboratory Radiation Sources 27 2.2.1 X­ray­ Synchrotron radiation. 27 2.2.2 Electron gun 29 2.3 Experiments. 33 2.3.1 Cooling and deposition. 33 2.3.2 Irradiation 35 2.3.3 Warm­up 37 II X­ray Induced Chemical Evolution and Photo­Desorption in Inter­ stellar Ice Analogs 41 3 Chemical Evolution Of a CO Ice Induced By Soft X­rays 45 3.1 Introduction 47 3.2 The CO Ice Irradiation. 48 3.3 Products of The Irradiation 52 3.4 Discussion 61 3.4.1 Saturation of Products. 61 3.4.2 Comparison with Other Experiments 63 3.5 Implications For Space Chemistry 65 4 X­Ray Irradiation of H 2 O + CO Ice Mixtures With Synchrotron Light 69 4.1 Introduction 70 4.2 The experiment. 73 4.3 Results 74 4.3.1 Irradiation 76 4.3.2 Warm­up and Residue of Irradiated Ices 78 4.3.3 Cross Sections for the Formation of Products. 83 4.4 Discussion 85 4.4.1 Chemistry 85 4.4.2 Astrophysical Implications 87 5 Synthesis of Complex Organic Molecules in Soft X­Ray Irradiated Ices 91 5.1 Introduction 93 5.2 Experiment. 94 5.3 Resutls and Discussion 96 5.3.1 Irradiation and Products. 96 5.3.2 Warm Up: Infrared and Mass Spectra 103 5.3.3 The Refractory Residue 110 5.4 Conclusions and Astrophysical Implications 112 6 X­Ray Photo­desorption of H 2 O:CO:NH 3 Circumstellar Ice Analogs: Gas­phase Enrichment 115 6.1 Introduction 117 6.2 Experiments. 119 6.3 Photo­desorbing Fragments Induced by X­Rays. 120 6.4 Photo­desorption Yield 125 6.5 Discussion 129 6.6 Conclusions 131 III Electron Impact Induces Photon­Desorption and Formation of Com­ plex Organic Molecules 135 7 Effects of 150−1000 eV Electron Impacts on Pure Carbon Monoxide Ices using the Interstellar Energetic­Process System (IEPS) 139 7.1 Introduction 142 7.2 Experiments. 143 7.3 Results and Analysis 144 7.3.1 Products of the Irradiations. 144 7.3.2 CO Destruction Cross­Section 148 7.3.3 CO 2 Production Cross­Section 150 7.3.4 CO and CO2 Desorption 152 7.3.5 The Role of Ice Thickness 154 7.4 Discussion 156 7.5 Conclusions 159 8 Electron Irradiation of a H2O:CO Ice Mixture 161 8.1 Introduction 161 8.2 Experiments. 161 8.3 Penetration Depths 162 8.4 Results 163 8.4.1 Products of irradiation 163 8.4.2 Destruction Cross­section of Parent Molecules 166 8.4.3 Formation of Products 167 8.4.4 Desorption Cross­section of CO. 169 8.4.5 Desorption yield of H2O and CO2 171 8.5 Discussion and Conclusions 173 9 Conclusions 179 9.1 Product inventory of the experiments 179 9.2 The importance of secondary electron cascade 180 9.3 Desorption 181 9.4 Production and destruction 181 9.5 Reproducing space chemistry in the laboratory: what have we learned? 182 Bibliography 185 A Spot size effect 207

    Aikawa, Y., D. Kamuro, I. Sakon, Y. Itoh, H. Terada, J. Noble, K. Pontoppidan, H. Fraser, M. Tamura,
    R. Kandori, et al.
    2012. AKARI observations of ice absorption bands towards edge­on young stellar objects. Astronomy
    & Astrophysics, 538:A57.
    Altwegg, K., H. Balsiger, A. Bar­Nun, J.­J. Berthelier, A. Bieler, P. Bochsler, C. Briois, U. Calmonte,
    M. R. Combi, H. Cottin, et al.
    2016. Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67p/churyumov­
    gerasimenko. Science advances, 2(5):e1600285.
    Andrade, D., M. Rocco, and H. Boechat­Roberty
    2010. X­ray photodesorption from methanol ice. Monthly Notices of the Royal Astronomical Society,
    409(3):1289–1296.
    Arumainayagam, C.
    2018. Radiation chemistry vs. photochemistry in the cosmic synthesis of prebiotic molecules.
    Asplund, M., N. Grevesse, A. J. Sauval, and P. Scott
    2009. The chemical composition of the sun. Annual Review of Astronomy and Astrophysics, 47:481–
    522.
    Baragiola, R., M. Famá, M. Loeffler, et al.
    2013. The science of solar system ices ed MS Gudipati and J. Castillo­Rogez.
    Baragiola, R. A., M. J. Loeffler, U. Raut, R. A. Vidal, and C. D. Wilson
    2005. Laboratory studies of radiation effects in water ice in the outer solar system. Radiation Physics
    and Chemistry, 72(2­3):187–191.
    Beaulieu, J.­P., D. P. Bennett, P. Fouqué, A. Williams, M. Dominik, U. Jørgensen, D. Kubas, A. Cassan,
    C. Coutures, J. Greenhill, et al.
    2006. Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature,
    439(7075):437.
    Belloche, A., R. T. Garrod, H. S. P. Müller, and K. M. Menten
    2014. Detection of a branched alkyl molecule in the interstellar medium: iso­propyl cyanide. Science,
    345(6204):1584–1587.
    185
    Belloche, A., K. M. Menten, C. Comito, H. S. P. Müller, P. Schilke, J. Ott, S. Thorwirth, and C. Hieret
    2008. Detection of amino acetonitrile in Sgr B2(N). Astronomy & Astrophysics, 482(1):179–196.
    Benndorf, M., W. Westerveld, J. Van Eck, J. Van der Weg, and H. Heideman
    1999. Electron­ion coincidence measurements on CO after C 1s and O 1s photoabsorption. Journal
    of Physics B: Atomic, Molecular and Optical Physics, 32(11):2503.
    Bennett, C. J., T. Hama, Y. S. Kim, M. Kawasaki, and R. I. Kaiser
    2010. Laboratory studies on the formation of formic acid (HCOOH) in interstellar and cometary ices.
    The Astrophysical Journal, 727(1):27.
    Bennett, C. J., T. Hama, Y. S. Kim, M. Kawasaki, and R. I. Kaiser
    2011. Laboratory studies on the formation of formic acid (HCOOH) in interstellar and cometary ices.
    The Astrophysical Journal, 727.
    Bergeld, J. and D. Chakarov
    2006. Photo ejection of water molecules from amorphous ice films.
    Bernstein, M. P., J. P. Dworkin, S. A. Sandford, G. W. Cooper, and L. J. Allamandola
    2002. Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature,
    416(6879):401.
    Bernstein, M. P., S. A. Sandford, L. J. Allamandola, S. Chang, and M. A. Scharberg
    1995. Organic compounds produced by photolysis of realistic interstellar and cometary ice analogs
    containing methanol. The Astrophysical Journal, 454:327.
    Bertin, M., E. C. Fayolle, C. Romanzin, K. I. Öberg, X. Michaut, A. Moudens, L. Philippe, P. Jeseck,
    H. Linnartz, and J.­H. Fillion
    2012. UV photodesorption of interstellar CO ice analogues: from subsurface excitation to surface
    desorption. Physical Chemistry Chemical Physics, 14(28):9929–9935.
    Bertrand, T. and F. Forget
    2016. Observed glacier and volatile distribution on Pluto from atmosphere–topography processes.
    Nature, 540(7631):86.
    Bianchi, E., C. Codella, C. Ceccarelli, F. Vazart, R. Bachiller, N. Balucani, M. Bouvier, M. De Simone,
    J. Enrique­Romero, C. Kahane, et al.
    2018. The census of interstellar complex organic molecules in the Class I hot corino of SVS13­A.
    Monthly Notices of the Royal Astronomical Society, 483(2):1850–1861.
    Bisschop, S., G. Fuchs, A. Boogert, E. Van Dishoeck, and H. Linnartz
    2007. Infrared spectroscopy of HCOOH in interstellar ice analogues. Astronomy & Astrophysics,
    470(2):749–759.
    Boogert, A. A., P. A. Gerakines, and D. C. Whittet
    2015. Observations of the icy universe. Annual Review of Astronomy and Astrophysics, 53:541–581.
    186Boogert, A. C., K. M. Pontoppidan, C. Knez, F. Lahuis, J. Kessler­Silacci, E. F. van Dishoeck, G. A.
    Blake, J.­C. Augereau, S. Bisschop, S. Bottinelli, et al.
    2008. The c2d Spitzer spectroscopic survey of ices around low­mass young stellar objects. I. H2O and
    the 5­8 µm bands. The Astrophysical Journal, 678(2):985.
    Bossa, J.­B., K. Isokoski, M. de Valois, and H. Linnartz
    2012. Thermal collapse of porous interstellar ice. Astronomy & Astrophysics, 545:A82.
    Bottinelli, S., V. Wakelam, E. Caux, C. Vastel, Y. Aikawa, and C. Ceccarelli
    2014. CH in absorption in IRAS 16293­ 2422. Monthly Notices of the Royal Astronomical Society,
    441(3):1964–1973.
    Brewer, L. and J. L.­F. Wang
    1972. Infrared absorption spectra of isotopic ozone isolated in rare­gas matrices. The Journal of
    Chemical Physics, 56(2):759–762.
    Brown, R. D., D. E. Pullin, E. H. Rice, and M. Rodler
    1985. The infrared spectrum and force field of tricarbon monoxide. Journal of the American Chemical
    Society, 107(26):7877–7880.
    Brucato, J. R., G. A. Baratta, and G. Strazzulla
    2006. An infrared study of pure and ion irradiated frozen formamide. Astronomy & Astrophysics,
    455(2):395–399.
    Caro, G. M., E. Dartois, P. Boduch, H. Rothard, A. Domaracka, and A. Jiménez­Escobar
    2014. Comparison of UV and high­energy ion irradiation of methanol: ammonia ice. Astronomy &
    Astrophysics, 566:A93.
    Caro, G. M., A. Jiménez­Escobar, J. Martín­Gago, C. Rogero, C. Atienza, S. Puertas, J. Sobrado, and
    J. Torres­Redondo
    2010. New results on thermal and photodesorption of CO ice using the novel InterStellar Astrochem­
    istry Chamber (isac). Astronomy & Astrophysics, 522:A108.
    Caro, G. M. and W. Schutte
    2003. UV­photoprocessing of interstellar ice analogs: New infrared spectroscopic results. Astronomy
    & Astrophysics, 412(1):121–132.
    Caro, G. M. M. and E. Dartois
    2013. Prebiotic chemistry in icy grain mantles in space. an experimental and observational approach.
    Chemical Society Reviews, 42(5):2173–2185.
    Carr, J. S. and J. R. Najita
    2008. Organic molecules and water in the planet formation region of young circumstellar disks. Sci­
    ence, 319(5869):1504–1506.
    Carroll, B., B. A. McGuire, R. Loomis, I. A. Finneran, P. Jewell, A. Remijan, and G. Blake
    2016. Discovery of the First Interstellar Chiral Molecule: Propylene Oxide. In 71st International
    Symposium on Molecular Spectroscopy, P. WH06.
    187
    Cecchi­Pestellini, C. and S. Aiello
    1992. Cosmic ray induced photons in dense interstellar clouds. Monthly Notices of the Royal Astro­
    nomical Society, 258:125–133.
    Cecchi­Pestellini, C., A. Ciaravella, G. Micela, and T. Penz
    2009. The relative role of EUV radiation and X­rays in the heating of hydrogen­rich exoplanet atmo­
    spheres. Astronomy & Astrophysics, 496(3):863–868.
    Cernicharo, J., Z. Kisiel, B. Tercero, L. Kolesniková, I. Medvedev, A. López, S. Fortman, M. Win­
    newisser, F. de Lucia, J. Alonso, et al.
    2016. A rigorous detection of interstellar CH3NCO: an important missing species in astrochemical
    networks. Astronomy & Astrophysics, 587:L4.
    Chen, H.­F., M.­C. Liu, S.­C. Chen, T.­P. Huang, and Y.­J. Wu
    2015. Irradiation of ethylene diluted in solid nitrogen with vacuum ultraviolet light and electrons: its
    implications for the formation of hcn and hnc. The Astrophysical Journal, 804(1):36.
    Chen, Y.­J., K.­J. Chuang, G. M. Caro, M. Nuevo, C.­C. Chu, T.­S. Yih, W.­H. Ip, and C.­Y. Wu
    2014. Vacuum ultraviolet emission spectrum measurement of a microwave­discharge hydrogen­flow
    lamp in several configurations: application to photodesorption of CO ice. The Astrophysical Journal,
    781(1):15.
    Chen, Y.­J., A. Ciaravella, G. M. Caro, C. Cecchi­Pestellini, A. Jiménez­Escobar, K.­J. Juang, and T.­S.
    Yih
    2013. Soft X­ray irradiation of methanol ice: formation of products as a function of photon energy.
    The Astrophysical Journal, 778(2):162.
    Chen, Y.­J., M. Nuevo, C.­C. Chu, Y.­G. Fan, T.­S. Yih, W.­H. Ip, H.­S. Fung, and C.­Y. Wu
    2011. Photo­desorbed species produced by the UV/EUV irradiation of an H2O:CO2:NH3 ice mixture.
    Advances in Space Research, 47(9):1633–1644.
    Chen, Y.­J., M. Nuevo, J.­M. Hsieh, T.­S. Yih, W.­H. Sun, W.­H. Ip, H.­S. Fung, S.­Y. Chiang, Y.­Y. Lee,
    J.­M. Chen, et al.
    2007. Carbamic acid produced by the UV/EUV irradiation of interstellar ice analogs. Astronomy &
    Astrophysics, 464(1):253–257.
    Chuang, K.­J., G. Fedoseev, S. Ioppolo, E. van Dishoeck, and H. Linnartz
    2015. H­atom addition and abstraction reactions in mixed CO, H2CO and CH3OH ices–an extended
    view on complex organic molecule formation. Monthly Notices of the Royal Astronomical Society,
    455(2):1702–1712.
    Chung, Y.
    2002. Cross sections of dissociative ionization of CO by electron impact. Journal of the Korean
    Physical Society, 41(5):682–686.
    Ciaravella, A., G. M. Caro, A. J. Escobar, C. Cecchi­Pestellini, S. Giarrusso, M. Barbera, and A. Collura
    2010. Soft X­ray irradiation of methanol ice: Implication for H2CO formation in interstellar regions.
    The Astrophysical Journal Letters, 722(1):L45.
    188Ciaravella, A., Y.­J. Chen, C. Cecchi­Pestellini, A. Jiménez­Escobar, G. M. Caro, K.­J. Chuang, and C.­
    H. Huang
    2016. Chemical evolution of a CO ice induced by soft X­rays. The Astrophysical Journal, 819(1):38.
    Ciaravella, A., A. Jiménez­Escobar, G. M. Caro, C. Cecchi­Pestellini, R. Candia, S. Giarrusso, M. Bar­
    bera, and A. Collura
    2012. Soft X­ray irradiation of pure carbon monoxide interstellar ice analogues. The Astrophysical
    Journal Letters, 746(1):L1.
    Ciaravella, A., A. Jiménez­Escobar, C. Cecchi­Pestellini, C. H. Huang, N. E. Sie, G. M. M. Caro, and
    Y. J. Chen
    2019. Synthesis of complex organic molecules in soft X­ray irradiated ices. The Astrophysical Journal,
    879(1):21.
    Cottin, H., M. H. Moore, and Y. Bénilan
    2003. Photodestruction of relevant interstellar molecules in ice mixtures. The Astrophysical Journal,
    590(2):874.
    Crovisier, J., T. Encrenaz, and M. Combes
    1991. Carbon suboxide in comet Halley. Nature, 353(6345):610.
    Cruz­Diaz, G., G. M. Caro, Y.­J. Chen, and T.­S. Yih
    2014. Vacuum­UV spectroscopy of interstellar ice analogs­I. absorption cross­sections of polar­ice
    molecules. Astronomy & Astrophysics, 562:A119.
    Cruz­Diaz, G. A., R. Martín­Doménech, G. M. Caro, and Y.­J. Chen
    2016. Negligible photodesorption of methanol ice and active photon­induced desorption of its irradi­
    ation products. Astronomy & Astrophysics, 592:A68.
    Cuppen, H., E. Penteado, K. Isokoski, N. van der Marel, and H. Linnartz
    2011. CO ice mixed with CH3OH: the answer to the non­detection of the 2152 cm− 1 band? Monthly
    Notices of the Royal Astronomical Society, 417(4):2809–2816.
    Dalgarno, A., M. Yan, and W. Liu
    1999. Electron energy deposition in a gas mixture of atomic and molecular hydrogen and helium. The
    Astrophysical Journal Supplement Series, 125(1):237.
    Dame, T. M., D. Hartmann, and P. Thaddeus
    2001. The Milky Way in molecular clouds: a new complete CO survey. The Astrophysical Journal,
    547(2):792.
    Damiani, F., G. Micela, S. Sciortino, and F. Harnden Jr
    1995. Einstein observations of T Tauri stars in Taurus­Auriga. I. properties of X­ray emission. The
    Astrophysical Journal, 446:331.
    189
    Dartois, E., B. Augé, P. Boduch, R. Brunetto, M. Chabot, A. Domaracka, J. Ding, O. Kamalou, X. Lv,
    H. Rothard, et al.
    2015. Heavy ion irradiation of crystalline water ice­cosmic ray amorphisation cross­section and sput­
    tering yield. Astronomy & Astrophysics, 576:A125.
    Dartois, E., L. d’Hendecourt, W. Thi, K. Pontoppidan, and E. Van Dishoeck
    2002. Combined VLT ISAAC/ISO SWS spectroscopy of two protostellar sources­the importance of
    minor solid state features. Astronomy & Astrophysics, 394(3):1057–1068.
    Darwent, B. d.
    1970. Bond dissociation energies in simple molecules. Technical report, National Standard Reference
    Data System.
    De Barros, A., P. Boduch, A. Domaracka, H. Rothard, and E. Da Silveira
    2012. Radiolysis of astrophysical ices by heavy ion irradiation: destruction cross section measurement.
    Low Temperature Physics, 38(8):759–765.
    De Marcellus, P., C. Meinert, M. Nuevo, J.­J. Filippi, G. Danger, D. Deboffle, L. Nahon, L. L. S.
    d’Hendecourt, and U. J. Meierhenrich
    2011. Non­racemic amino acid production by ultraviolet irradiation of achiral interstellar ice analogs
    with circularly polarized light. The Astrophysical Journal Letters, 727(2):L27.
    DeKock, R. and W. Weltner Jr
    1971. C2O, CN2, and C3O molecules. Journal of the American Chemical Society, 93(25):7106–7107.
    DelloRusso, N., R. K. Khanna, and M. Moore
    1993. Identification and yield of carbonic acid and formaldehyde in irradiated ices. Journal of Geo­
    physical Research: Planets, 98(E3):5505–5510.
    Demyk, K., E. Dartois, L. d’Hendecourt, M. Jourdain de Muizon, A. Heras, and M. Breitfellner
    1998. Laboratory identification of the 4.62 µm m solid state absorption band in the iso − sws spectrum
    of rafgl7009s. Astronomy and Astrophysics, 339:553–560.
    d’Hendecourt, L., L. Allamandola, et al.
    1986. Time dependent chemistry in dense molecular clouds. III­infrared band cross sections of
    molecules in the solid state at 10 K. Astronomy and Astrophysics Supplement Series, 64:453.
    Dibben, M., J. Szczepanski, C. Wehlburg, and M. Vala
    2000. Complexes of linear carbon clusters with water. The Journal of Physical Chemistry A, 104(16):
    3584–3592.
    Ding, X., S. Wang, C. Rittby, and W. Graham
    2000. Fourier transform infrared isotopic study of the C12 chain trapped in solid Ar. The Journal of
    Chemical Physics, 112(11):5113–5120.
    Domaracka, A., E. S. Duarte, P. Boduch, H. Rothard, J.­M. Ramillon, E. Dartois, S. Pilling, L. Farenzena,
    and E. F. Da Silveira
    2010. Infrared study of astrophysical ice analogues irradiated by swift nickel ions. Nuclear Instruments
    190and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(19):
    2960–2963.
    Draine, B. T.
    1978. Photoelectric heating of interstellar gas. The Astrophysical Journal Supplement Series, 36:595–
    619.
    Drouin, D., A. R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin
    2007. CASINO V2. 42—a fast and easy­to­use modeling tool for scanning electron microscopy and
    microanalysis users. Scanning: The Journal of Scanning Microscopies, 29(3):92–101.
    Duarte, E. S., A. Domaracka, P. Boduch, H. Rothard, E. Dartois, and E. Da Silveira
    2010. Laboratory simulation of heavy­ion cosmic­ray interaction with condensed CO. Astronomy &
    Astrophysics, 512:A71.
    Falk, M.
    1987. Amorphous solid carbon dioxide. The Journal of chemical physics, 86(2):560–564.
    Favata, F., E. Flaccomio, F. Reale, G. Micela, S. Sciortino, H. Shang, K. Stassun, and E. Feigelson
    2005. Bright X­ray flares in Orion young stars from COUP: evidence for star­disk magnetic fields?
    The Astrophysical Journal Supplement Series, 160(2):469.
    Favre, C., D. Fedele, L. Maud, R. Booth, M. Tazzari, A. Miotello, L. Testi, D. Semenov, and S. Bruderer
    2019. Gas density perturbations induced by one or more forming planets in the as 209 protoplanetary
    disk as seen with alma. The Astrophysical Journal, 871(1):107.
    Fayolle, E. C., J. Balfe, R. Loomis, J. Bergner, D. Graninger, M. Rajappan, and K. I. Öberg
    2016. N2 and CO desorption energies from water ice. The Astrophysical Journal Letters, 816(2):L28.
    Fayolle, E. C., M. Bertin, C. Romanzin, X. Michaut, K. I. Öberg, H. Linnartz, and J.­H. Fillion
    2011. CO ice photodesorption: a wavelength­dependent study. The Astrophysical Journal Letters,
    739(2):L36.
    Fayolle, E. C., M. Bertin, C. Romanzin, H. M. Poderoso, L. Philippe, X. Michaut, P. Jeseck, H. Linnartz,
    K. I. Öberg, and J.­H. Fillion
    2013. Wavelength­dependent UV photodesorption of pure N2 and O2 ices. Astronomy & Astrophysics,
    556:A122.
    Förstel, M., P. Maksyutenko, B. M. Jones, B. J. Sun, H. C. Lee, A. H. Chang, and R. I. Kaiser
    2016. On the formation of amide polymers via carbonyl–amino group linkages in energetically pro­
    cessed ices of astrophysical relevance. The Astrophysical Journal, 820(2):117.
    Freivogel, P., M. Grutter, D. Forney, and J. P. Maier
    1997. Infrared bands of mass­selected carbon chains c n (n= 8­ 12) and c n ­(n= 5­ 10, 12) in neon
    matrices. Chemical physics, 216(3):401–406.
    Fridman, A. and L. A. Kennedy
    2004. Plasma physics and engineering. CRC press.
    191
    Fulvio, D., S. Góbi, C. Jäger, Á. Kereszturi, and T. Henning
    2017. Laboratory experiments on the low­temperature formation of carbonaceous grains in the ISM.
    The Astrophysical Journal Supplement Series, 233.
    Gale, G., P. Guyot­Sionnest, W. Zheng, and C. Flytzanis
    1985. Time­resolved nonlinear spectroscopy of a fermi doublet: The { ν 1, 2 ν 2} Fermi resonance in
    CO2 solid. Physical review letters, 54(8):823.
    Garrod, R. T.
    2013. A three­phase chemical model of hot cores: The formation of glycine. The Astrophysical
    Journal, 765(1):60.
    Garrod, R. T., V. Wakelam, and E. Herbst
    2007. Non­thermal desorption from interstellar dust grains via exothermic surface reactions. Astron­
    omy & Astrophysics, 467(3):1103–1115.
    Gerakines, P., M. Moore, and R. Hudson
    2001. Energetic processing of laboratory ice analogs: UV photolysis versus ion bombardment. Journal
    of Geophysical Research: Planets, 106(E12):33381–33385.
    Gerakines, P., M. Moore, and R. Hudson
    2004. Ultraviolet photolysis and proton irradiation of astrophysical ice analogs containing hydrogen
    cyanide. Icarus, 170(1):202–213.
    Gerakines, P., W. Schutte, and P. Ehrenfreund
    1996. Ultraviolet processing of interstellar ice analogs. I. pure ices. Astronomy and Astrophysics,
    312:289–305.
    Gerakines, P., W. Schutte, J. Greenberg, and E. van Dishoeck
    1995. The infrared band strengths of h_2_o, co and co_2_ in laboratory simulations of astrophysical
    ice mixtures. Astronomy and Astrophysics, 296:810.
    Gerakines, P. A., J. Bray, A. Davis, and C. Richey
    2005. The strengths of near­infrared absorption features relevant to interstellar and planetary ices. The
    Astrophysical Journal, 620(2):1140.
    Gerakines, P. A., M. H. Moore, and R. L. Hudson
    2000. Carbonic acid production in H2O:CO2 ices. UV photolysis vs. proton bombardment. Astron. &
    Astrophys., 357:793–800.
    Gibb, E., D. Whittet, A. Boogert, and A. Tielens
    2004. Interstellar ice: the infrared space observatory legacy. The Astrophysical Journal Supplement
    Series, 151(1):35.
    Gibb, E. L., D. C. B. Whittet, W. A. Schutte, A. C. A. Boogert, J. E. Chiar, P. Ehrenfreund, P. A. Gerakines,
    J. V. Keane, A. G. G. M. Tielens, E. F. van Dishoeck, and O. Kerkhof
    2000. An Inventory of Interstellar Ices toward the Embedded Protostar W33A. The Astrophysical
    Journal, 536:347–356.
    192Giesen, T. F., U. Berndt, K. M. Yamada, G. Fuchs, R. Schieder, G. Winnewisser, R. A. Provencal, F. N.
    Keutsch, A. Van Orden, and R. J. Saykally
    2001. Detection of the linear carbon cluster C10: Rotationally resolved diode­laser spectroscopy.
    ChemPhysChem, 2(4):242–247.
    Gillett, F. and W. Forrest
    1973. Spectra of the Becklin­Neugebauer point source and the Kleinmann­Low nebula from 2.8 to
    13.5 microns. The Astrophysical Journal, 179:483–491.
    Goesmann, F., H. Rosenbauer, J. H. Bredehöft, M. Cabane, P. Ehrenfreund, T. Gautier, C. Giri, H. Krüger,
    L. Le Roy, A. J. MacDermott, et al.
    2015. Organic compounds on comet 67P/Churyumov­Gerasimenko revealed by COSAC mass spec­
    trometry. Science, 349(6247):aab0689.
    Gómez­Zavaglia, A. and R. Fausto
    2003. Low­temperature solid­state FTIR study of glycine, sarcosine and N, N­dimethylglycine: ob­
    servation of neutral forms of simple α­amino acids in the solid state. Physical Chemistry Chemical
    Physics, 5(15):3154–3161.
    Gomis, O., G. Leto, and G. Strazzulla
    2004. Hydrogen peroxide production by ion irradiation of thin water ice films. Astronomy & Astro­
    physics, 420(2):405–410.
    Graham, W., K. Dismuke, and W. Weltner Jr
    1976. The C4 molecule. The Astrophysical Journal, 204:301–310.
    Grutter, M., P. Freivogel, D. Forney, and J. P. Maier
    1997. Diffusion of mass­selected carbon atoms and molecules in argon and neon matrices. The Journal
    of chemical physics, 107(14):5356–5360.
    Gudipati, M. S. and L. J. Allamandola
    2006. Unusual stability of polycyclic aromatic hydrocarbon radical cations in amorphous water ices
    up to 120 K: Astronomical implications. The Astrophysical Journal, 638(1):286.
    Gullikson, E. and B. Henke
    1989. X­ray­induced secondary­electron emission from solid xenon. Physical Review B, 39(1):1.
    Hagen, W., L. Allamandola, and J. Greenberg
    1979. Interstellar molecule formation in grain mantles: The laboratory analog experiments, results
    and implications. Astrophysics and Space Science, 65(1):215–240.
    Hagen, W., A. Tielens, and J. Greenberg
    1981. The infrared spectra of amorphous solid water and ice Ic between 10 and 140 K. Chemical
    Physics, 56(3):367–379.
    193
    Hamaguchi, K., M. F. Corcoran, C. M. P. Russell, A. M. T. Pollock, T. R. Gull, M. Teodoro, T. I. Madura,
    A. Damineli, and J. M. Pittard
    2014. X­ray Emission from Eta Carinae near Periastron in 2009. I. A Two­state Solution. The Astro­
    physical Journal, 784:125.
    Haxton, D. J., C. W. McCurdy, and T. N. Rescigno
    2007. Dissociative electron attachment to the H2O molecule i. complex­valued potential­energy sur­
    faces for the B12, A12, and B22 metastable states of the water anion. Physical Review A, 75(1):
    012710.
    Hempelmann, A., M. Piancastelli, F. Heiser, O. Gessner, A. Rüdel, and U. Becker
    1999. Resonant photofragmentation of methanol at the carbon and oxygen K­edge by high­resolution
    ion­yield spectroscopy. Journal of Physics B: Atomic, Molecular and Optical Physics, 32(11):2677.
    Henke, B. L., E. M. Gullikson, and J. C. Davis
    1993. X­ray interactions: photoabsorption, scattering, transmission, and reflection at E= 50­30,000
    eV, Z= 1­92. Atomic data and nuclear data tables, 54(2):181–342.
    Henke, B. L., J. Liesegang, and S. D. Smith
    1979. Soft­X­ray­induced secondary­electron emission from semiconductors and insulators: Models
    and measurements. Physical review B, 19(6):3004.
    Henning, T. and D. Semenov
    2013. Chemistry in protoplanetary disks. Chemical Reviews, 113(12):9016–9042.
    Herbst, E. and E. F. Van Dishoeck
    2009. Complex organic interstellar molecules. Annual Review of Astronomy and Astrophysics, 47:427–
    480.
    Hinkle, K. W., J. J. Keady, and P. F. Bernath
    1988. Detection of C3 in the circumstellar shell of IRC+ 10216. Science, 241(4871):1319–1322.
    Holland, F., M. Winnewisser, G. Maier, H. Reisenauer, and A. Ulrich
    1988. The high­resolution fourier transform infrared spectrum of the ν4 band system of OCCCCCO.
    Journal of Molecular Spectroscopy, 130:470–474.
    Holtom, P. D., C. J. Bennett, Y. Osamura, N. J. Mason, and R. I. Kaiser
    2005. A combined experimental and theoretical study on the formation of the amino acid glycine
    (NH2CH2COOH) and its isomer (CH3NHCOOH) in extraterrestrial ices. The Astrophysical Journal,
    626(2):940.
    Hoogeveen, G. W. and P. A. Cloutier
    1996. The Triton­Neptune plasma interaction. Journal of Geophysical Research: Space Physics,
    101(A1):19–29.
    194Huang, C.­H., A. Ciaravella, C. Cecchi­Pestellini, A. Jiménez­Escobar, L.­C. Hsiao, C.­C. Huang, P.­C.
    Chen, N.­E. Sie, and Y.­J. Chen
    in press. Effects of 150­1000 ev electron impacts on pure carbon monoxide ices using the interstellar
    energetic­process system (ieps). The Astrophysical Journal.
    Hudgins, D., S. Sandford, L. Allamandola, and A. Tielens
    1993. Mid­and far­infrared spectroscopy of ices­optical constants and integrated absorbances. The
    Astrophysical Journal Supplement Series, 86:713–870.
    Hudson, J. E., C. Vallance, and P. W. Harland
    2003. Absolute electron impact ionization cross­sections for CO, CO2, OCS and CS2. Journal of
    Physics B: Atomic, Molecular and Optical Physics, 37(2):445.
    Hudson, R. and M. Moore
    2000. New experiments and interpretations concerning the ”XCN” band in interstellar ice analogues.
    Astronomy and Astrophysics, 357:787–792.
    Hudson, R. L., M. H. Moore, and A. M. Cook
    2005. IR characterization and radiation chemistry of glycolaldehyde and ethylene glycol ices. Ad­
    vances in Space Research, 36(2):184–189.
    Hulett, H., Y. Wolman, S. L. Miller, J. Ibanez, J. Orò, S. Fox, and C. R. Windsor
    1971. Formaldehyde and ammonia as precursors to prebiotic amino acids. Science, 174(4013):1038–
    1041.
    Huntress Jr, W., M. Alien, and M. Delrtsky
    1991. Carbon suboxide in comet halley? Nature, 352(6333):316.
    Hutter, J., H. P. Luethi, and F. Diederich
    1994. Structures and vibrational frequencies of the carbon molecules C2–C18 calculated by density
    functional theory. Journal of the American Chemical Society, 116(2):750–756.
    Islam, F., G. Baratta, and M. Palumbo
    2014. Simultaneous UV­and ion processing of astrophysically relevant ices­the case of CH3OH:N2
    solid mixtures. Astronomy & Astrophysics, 561:A73.
    Itikawa, Y.
    2002. Cross sections for electron collisions with carbon dioxide. Journal of Physical and Chemical
    Reference Data, 31(3):749–767.
    Itikawa, Y. and N. Mason
    2005. Cross sections for electron collisions with water molecules. Journal of Physical and Chemical
    reference data, 34(1):1–22.
    Jacox, M. E.
    2003. Vibrational and electronic energy levels of polyatomic transient molecules. supplement B. Jour­
    nal of Physical and Chemical Reference Data, 32(1):1–441.
    195
    Jacox, M. E., D. E. Milligan, N. G. Moll, and W. E. Thompson
    1965. Matrix­isolation infrared spectrum of the free radical CCO. The Journal of Chemical Physics,
    43(10):3734–3746.
    Jamieson, C. S., C. J. Bennett, A. M. Mebel, and R. I. Kaiser
    2005. Investigating the mechanism for the formation of nitrous oxide [N2O (x 1σ+)] in extraterrestrial
    ices. The Astrophysical Journal, 624(1):436.
    Jamieson, C. S., A. M. Mebel, and R. I. Kaiser
    2006. Understanding the kinetics and dynamics of radiation­induced reaction pathways in carbon
    monoxide ice at 10 K. The Astrophysical Journal Supplement Series, 163(1):184.
    Jenniskens, P., D. Blake, M. Wilson, and A. Pohorille
    1995. High­density amorphous ice, the frost on interstellar grains. The Astrophysical Journal, 455:389.
    Jenniskens, P. and D. F. Blake
    1994. Structural transitions in amorphous water ice and astrophysical implications. Science,
    265(5173):753–756.
    Jiang, G. J., W. B. Person, and K. G. Brown
    1975. Absolute infrared intensities and band shapes in pure solid CO and CO in some solid matrices.
    The Journal of Chemical Physics, 62(4):1201–1211.
    Jiménez­Escobar, A., G. M. Caro, A. Ciaravella, C. Cecchi­Pestellini, R. Candia, and G. Micela
    2012. Soft X­ray irradiation of H2S ice and the presence of S2 in comets. The Astrophysical Journal
    Letters, 751(2):L40.
    Jiménez­Escobar, A., Y.­J. Chen, A. Ciaravella, C.­H. Huang, G. Micela, and C. Cecchi­Pestellini
    2016. X­ray irradiation of H2O + CO ice mixtures with synchrotron light. The Astrophysical Journal,
    820(1):25.
    Jiménez­Escobar, A., A. Ciaravella, C. Cecchi­Pestellini, C.­H. Huang, N.­E. Sie, Y.­J. Chen, and G. M.
    Caro
    2018. X­ray photo­desorption of H2O:CO:NH3 circumstellar ice analogs: Gas­phase enrichment. The
    Astrophysical Journal, 868(1):73.
    Jiménez­Escobar, A., B. Giuliano, G. M. Caro, J. Cernicharo, and N. Marcelino
    2014. Investigation of HNCO isomer formation in ice mantles by UV and thermal processing: An
    experimental approach. The Astrophysical Journal, 788(1):19.
    Johnson, R.
    2010. Physics and chemistry at low temperatures ed l. khriachtchev.
    Johnson, R., R. Carlson, J. Cooper, C. Paranicas, M. Moore, and M. Wong
    2004. Radiation effects on the surfaces of the galilean satellites. Jupiter: The planet, satellites and
    magnetosphere, Pp. 485–512.
    196Jones, B. M., C. J. Bennett, and R. I. Kaiser
    2011. Mechanistical studies on the production of formamide (H2NCHO) within interstellar ice analogs.
    The Astrophysical Journal, 734(2):78.
    Jones, B. M., R. I. Kaiser, and G. Strazzulla
    2014. UV­Vis, infrared, and mass spectroscopy of electron irradiated frozen oxygen and carbon dioxide
    mixtures with water. The Astrophysical Journal, 781(2):85.
    Joshipura, K. N., S. Gangopadhyay, C. G. Limbachiya, and M. Vinodkumar
    2007. Electron impact ionization of water molecules in ice and liquid phases. Journal of Physics:
    Conference Series, 80:012008.
    Kaňuchová, Z., R. Urso, G. Baratta, J. Brucato, M. Palumbo, and G. Strazzulla
    2016. Synthesis of formamide and isocyanic acid after ion irradiation of frozen gas mixtures. Astron­
    omy & Astrophysics, 585:A155.
    Kaplan, I. and A. Miterev
    1987. Interaction of charged particles with molecular medium and track effects in radiation chemistry.
    Adv. Chem. Phys, 68:255–386.
    Kastner, J. H., D. P. Huenemoerder, N. S. Schulz, C. R. Canizares, and D. A. Weintraub
    2002. Evidence for accretion: High­resolution X­ray spectroscopy of the classical T Tauri star TW
    Hydrae. The Astrophysical Journal, 567(1):434.
    KIM, K.­H., L. BOSOON, and L. SUNGYUL
    1998. Structures and spectroscopic properties of OCNO (N. Bulletin of the Korean Chemical Society,
    19(5):553–557.
    Kranze, R., P. Withey, C. Rittby, and W. Graham
    1995. Fourier transform infrared observation of the ν7 stretching mode of linear C9 in ar at 10 k. The
    Journal of chemical physics, 103(16):6841–6850.
    Kranze, R. H. and W. Graham
    1993. Fourier transform infrared isotopic study of the ν4 and ν5 stretching modes of linear C6 in ar at
    10 k. The Journal of chemical physics, 98(1):71–77.
    Kuan, Y.­J., S. B. Charnley, H.­C. Huang, W.­L. Tseng, and Z. Kisiel
    2003. Interstellar Glycine. The Astrophysical Journal, 593(2):848–867.
    Kurtz, J. and D. R. Huffman
    1990. Combined infrared and ultraviolet­visible spectroscopy matrix­isolated carbon vapor. The Jour­
    nal of chemical physics, 92(1):30–35.
    Kvenvolden, K., J. Lawless, K. Pering, E. Peterson, J. Flores, C. Ponnamperuma, I. R. Kaplan, and
    C. Moore
    1970. Evidence for extraterrestrial amino­acids and hydrocarbons in the Murchison meteorite. Nature,
    228(5275):923.
    197
    Kybett, B., G. Johnson, C. Barker, and J. Margrave
    1965. The heats of formation and polymerization of carbon suboxide. The Journal of Physical Chem­
    istry, 69(10):3603–3606.
    Lacy, J., F. Baas, L. Allamandola, C. Van de Bult, S. Persson, P. McGregor, C. Lonsdale, T. Geballe, et al.
    1984. 4.6 micron absorption features due to solid phase CO and cyano group molecules toward compact
    infrared sources. Astrophysical Journal, 276:533.
    Laporta, V., J. Tennyson, and R. Celiberto
    2016. Calculated low­energy electron­impact vibrational excitation cross sections for CO2 molecule.
    Plasma Sources Science and Technology, 25(6):06LT02.
    Lauck, T., L. Karssemeijer, K. Shulenberger, M. Rajappan, K. I. Öberg, and H. M. Cuppen
    2015. CO diffusion into amorphous H2O ices. The Astrophysical Journal, 801(2):118.
    Lellouch, E., C. De Bergh, B. Sicardy, S. Ferron, and H.­U. Käufl
    2010. Detection of CO in Triton’s atmosphere and the nature of surface­atmosphere interactions.
    Astronomy & Astrophysics, 512:L8.
    Ligterink, N., A. Coutens, V. Kofman, H. Müller, R. T. Garrod, H. Calcutt, S. Wampfler, J. K. Jørgensen,
    H. Linnartz, and E. Van Dishoeck
    2017. The ALMA­PILS survey: detection of CH3NCO towards the low­mass protostar IRAS 16293­
    2422 and laboratory constraints on its formation. Monthly Notices of the Royal Astronomical Society,
    469(2):2219–2229.
    Liu, W. and G. Victor
    1994. Electron energy deposition in carbon monoxide gas. The Astrophysical Journal, 435:909–919.
    Loeffler, M., G. Baratta, M. Palumbo, G. Strazzulla, and R. Baragiola
    2005. CO synthesis in solid CO by lyman­α photons and 200 keV protons. Astronomy & Astrophysics,
    435(2):587–594.
    Loomis, R. A., L. I. Cleeves, K. I. Öberg, V. V. Guzman, and S. M. Andrews
    2015. The distribution and chemistry of H2CO in the DM Tau protoplanetary disk. The Astrophysical
    Journal Letters, 809(2):L25.
    Lovas, F. J., J. Hollis, A. J. Remijan, and P. Jewell
    2006. Detection of ketenimine (CH2CNH) in Sagittarius B2 (N) hot cores. The Astrophysical Journal
    Letters, 645(2):L137.
    Lucarelli, F., C. Pittori, M. Cardillo, F. Verrecchia, E. Striani, M. Tavani, S. Vercellone, A. Bulgarelli,
    F. Gianotti, M. Trifoglio, et al.
    2011. AGILE detects enhanced gamma­ray emission from a region including the BL Lac Object S4
    1749+ 70. The Astronomer’s Telegram, 3199.
    Maier, G., H. P. Reisenauer, U. Schäfer, and H. Balli
    1988. C5O2 (1, 2, 3, 4­pentatetraene­1, 5­dione), a new oxide of carbon. Angewandte Chemie Inter­
    national Edition in English, 27(4):566–568.
    198Maier, G., H. P. Reisenauer, and A. Ulrich
    1991. Matrixspektroskopische untersuchungen zur existenz von C7 O2 (1, 2, 3, 4, 5, 6­heptahexaen­1,
    7­dion). Tetrahedron letters, 32(35):4469–4472.
    Majumdar, L., P. Gratier, T. Vidal, V. Wakelam, J.­C. Loison, K. M. Hickson, and E. Caux
    2016. Detection of CH3SH in protostar IRAS 16293­2422. Monthly Notices of the Royal Astronomical
    Society, 458(2):1859–1865.
    Mangan, M., B. Lindsay, and R. Stebbings
    2000. Absolute partial cross sections for electron­impact ionization of CO from threshold to 1000 eV.
    Journal of Physics B: Atomic, Molecular and Optical Physics, 33(17):3225.
    Marchione, D., J. D. Thrower, and M. R. McCoustra
    2016. Efficient electron­promoted desorption of benzene from water ice surfaces. Physical Chemistry
    Chemical Physics, 18(5):4026–4034.
    Martín­Doménech, R., G. M. Caro, J. Bueno, and F. Goesmann
    2014. Thermal desorption of circumstellar and cometary ice analogs. Astronomy & Astrophysics,
    564:A8.
    Martín­Doménech, R., G. M. Caro, and G. Cruz­Díaz
    2016. Study of the photon­induced formation and subsequent desorption of CH3OH and H2CO in
    interstellar ice analogs. Astronomy & Astrophysics, 589:A107.
    Martín­Doménech, R., J. Manzano­Santamaría, G. M. Caro, G. A. Cruz­Díaz, Y.­J. Chen, V. J. Herrero,
    and I. Tanarro
    2015. UV photoprocessing of CO2 ice: a complete quantification of photochemistry and photon­
    induced desorption processes. Astronomy & Astrophysics, 584:A14.
    Martín­Doménech, R., V. Rivilla, I. Jiménez­Serra, D. Quénard, L. Testi, and J. Martín­Pintado
    2017. Detection of methyl isocyanate (CH3NCO) in a solar­type protostar. Monthly Notices of the
    Royal Astronomical Society, 469(2):2230–2234.
    Mase, K., M. Nagasono, S. Tanaka, T. Urisu, E. Ikenaga, T. Sekitani, and K. Tanaka
    1998. Auger electron photoion coincidence technique combined with synchrotron radiation for the
    study of the ion desorption mechanism in the region of resonant transitions of condensed H2O. The
    Journal of chemical physics, 108(16):6550–6553.
    Mastrapa, R., W. Grundy, and M. Gudipati
    2013. The science of solar system ices. In Ch. Amorphous and Crystalline H2O­ice, Pp. 371–408.
    Springer New York New York, NY.
    Masunov, A. E., E. Wait, and S. S. Vasu
    2016. Chemical reaction CO + OH•→ CO2 + H• autocatalyzed by carbon dioxide: quantum chemical
    study of the potential energy surfaces. The Journal of Physical Chemistry A, 120(30):6023–6028.
    199
    Maté, B., G. Molpeceres, I. Tanarro, R. J. Peláez, J. Guillemin, J. Cernicharo, and V. J. Herrero
    2018. Stability of CH3NCO in astronomical ices under energetic processing: A laboratory study. The
    Astrophysical Journal, 861(1):61.
    Maté, B., G. Molpeceres, V. Timón, I. Tanarro, R. Escribano, J.­C. Guillemin, J. Cernicharo, and V. J.
    Herrero
    2017. Laboratory study of methyl isocyanate ices under astrophysical conditions. Monthly Notices of
    the Royal Astronomical Society, 470(4):4222–4230.
    Maté, B., Y. Rodriguez­Lazcano, O. Galvez, I. Tanarro, and R. Escribano
    2011. An infrared study of solid glycine in environments of astrophysical relevance. Physical Chem­
    istry Chemical Physics, 13(26):12268–12276.
    McCoustra, M. R. S. and J. D. Thrower
    2018. Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Elsevier.
    McGuire, B. A.
    2018. 2018 Census of interstellar, circumstellar, extragalactic, protoplanetary disk, and exoplanetary
    molecules. The Astrophysical Journal Supplement Series, 239(2):17.
    Meierhenrich, U. J., G. M. M. Caro, J. H. Bredehöft, E. K. Jessberger, and W. H.­P. Thiemann
    2004. Identification of diamino acids in the Murchison meteorite. Proceedings of the National
    Academy of Sciences, 101(25):9182–9186.
    Meinert, C., I. Myrgorodska, P. De Marcellus, T. Buhse, L. Nahon, S. V. Hoffmann, L. L. S. d'Hende­
    court, and U. J. Meierhenrich
    2016. Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science,
    352(6282):208–212.
    Mejía, C., A. de Barros, E. S. Duarte, E. da Silveira, E. Dartois, A. Domaracka, H. Rothard, and P. Boduch
    2015. Compaction of porous ices rich in water by swift heavy ions. Icarus, 250:222–229.
    Mencos, A. and L. Krim
    2016. Isomerization and fragmentation of acetonitrile upon interaction with N (4S) atoms: the chem­
    istry of nitrogen in dense molecular clouds. Monthly Notices of the Royal Astronomical Society, 460(2):
    1990–1998.
    Mencos, A. and L. Krim
    2018. Formation of doubly and triply bonded unsaturated compounds HCN, HNC, and CH2NH via N
    + CH4 low­temperature solid state reaction: from molecular clouds to solar system objects. Monthly
    Notices of the Royal Astronomical Society, 476(4):5432–5441.
    Mennella, V.
    2010. H atom irradiation of carbon grains under simulated dense interstellar medium conditions: the
    evolution of organics from diffuse interstellar clouds to the solar system. The Astrophysical Journal,
    718(2):867.
    200Micela, G.
    2002. Evolution of stellar coronal activity on the main sequence. In The Evolving Sun and its Influence
    on Planetary Environments, volume 269, P. 107.
    Michaud, M., A. Wen, and L. Sanche
    2003. Cross sections for low­energy (1–100 eV) electron elastic and inelastic scattering in amorphous
    ice. Radiation research, 159(1):3–22.
    Miller, F. A. and W. Fateley
    1964. The infrared spectrum of carbon suboxide. Spectrochimica Acta, 20(3):253–266.
    Milligan, D. E. and M. E. Jacox
    1971. Infrared spectrum and structure of intermediates in the reaction of OH with CO. The Journal of
    Chemical Physics, 54(3):927–942.
    Mitchell, E. H., U. Raut, B. D. Teolis, and R. A. Baragiola
    2017. Porosity effects on crystallization kinetics of amorphous solid water: Implications for cold icy
    objects in the outer solar system. Icarus, 285:291–299.
    Modica, P. and M. Palumbo
    2010. Formation of methyl formate after cosmic ion irradiation of icy grain mantles. Astronomy &
    Astrophysics, 519:A22.
    Moll, N. G., D. R. Clutter, and W. E. Thompson
    1966. Carbon trioxide: Its production, infrared spectrum, and structure studied in a matrix of solid
    CO2. The Journal of Chemical Physics, 45(12):4469–4481.
    Moore, M., R. Khanna, and B. Donn
    1991. Studies of proton irradiated H2O + CO2 and H2O + CO ices and analysis of synthesized
    molecules. Journal of Geophysical Research: Planets, 96(E2):17541–17545.
    Muñoz Caro, G. M., U. J. Meierhenrich, W. A. Schutte, B. Barbier, A. Arcones Segovia, H. Rosenbauer,
    W. H.­P. Thiemann, A. Brack, and J. M. Greenberg
    2002. Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature, 416:403–406.
    Munro, J. J., S. Harrison, M. M. Fujimoto, and J. Tennyson
    2012. A dissociative electron attachment cross­section estimator. Journal of Physics: Conference
    Series, 388(1):012013.
    Najita, J., E. A. Bergin, and J. N. Ullom
    2001. X­ray desorption of molecules from grains in protoplanetary disks. The Astrophysical Journal,
    561(2):880.
    Nomura, H., Y. Aikawa, M. Tsujimoto, Y. Nakagawa, and T. Millar
    2007. Molecular hydrogen emission from protoplanetary disks. II. effects of X­ray irradiation and dust
    evolution. The Astrophysical Journal, 661(1):334.
    201
    Nuevo, M., U. Meierhenrich, G. M. Caro, E. Dartois, L. d’Hendecourt, D. Deboffle, G. Auger, D. Blanot,
    J.­H. Bredehöft, and L. Nahon
    2006. The effects of circularly polarized light on amino acid enantiomers produced by the UV irradi­
    ation of interstellar ice analogs. Astronomy & Astrophysics, 457(3):741–751.
    Oba, Y., Y. Takano, N. Watanabe, and A. Kouchi
    2016. Deuterium fractionation during amino acid formation by photolysis of interstellar ice analogs
    containing deuterated methanol. The Astrophysical Journal Letters, 827(1):L18.
    Öberg, K. I.
    2016. Photochemistry and astrochemistry: Photochemical pathways to interstellar complex organic
    molecules. Chemical Reviews, 116(17):9631–9663.
    Öberg, K. I., A. A. Boogert, K. M. Pontoppidan, S. Van den Broek, E. F. Van Dishoeck, S. Bottinelli,
    G. A. Blake, and N. J. Evans II
    2011. The spitzer ice legacy: Ice evolution from cores to protostars. The Astrophysical Journal,
    740(2):109.
    Öberg, K. I., G. W. Fuchs, Z. Awad, H. J. Fraser, S. Schlemmer, E. F. Van Dishoeck, and H. Linnartz
    2007. Photodesorption of CO ice. The Astrophysical Journal Letters, 662(1):L23.
    Öberg, K. I., R. T. Garrod, E. F. Van Dishoeck, and H. Linnartz
    2009. Formation rates of complex organics in UV irradiated CH3OH­rich ices­i. experiments. Astron­
    omy & Astrophysics, 504(3):891–913.
    Öberg, K. I., V. V. Guzmán, K. Furuya, C. Qi, Y. Aikawa, S. M. Andrews, R. Loomis, and D. J. Wilner
    2015. The comet­like composition of a protoplanetary disk as revealed by complex cyanides. Nature,
    520(7546):198.
    Palumbo, M.
    2006. Formation of compact solid water after ion irradiation at 15 K. Astronomy & Astrophysics,
    453(3):903–909.
    Palumbo, M., G. Baratta, J. Brucato, A. Castorina, M. Satorre, and G. Strazzulla
    1998. Profile of the CO2 bands produced after ion irradiation of ice mixtures. Astronomy and Astro­
    physics, 334:247–252.
    Palumbo, M., P. Leto, C. Siringo, and C. Trigilio
    2008. Detection of C3O in the low­mass protostar Elias 18. The Astrophysical Journal, 685(2):1033.
    Parent, P., C. Laffon, C. Mangeney, F. Bournel, and M. Tronc
    2002. Structure of the water ice surface studied by X­ray absorption spectroscopy at the O K­edge.
    The Journal of chemical physics, 117(23):10842–10851.
    Pilling, S. and A. Bergantini
    2015. The effect of broadband soft X­rays in SO2­containing ices: Implications on the photochemistry
    of ices toward young stellar objects. The Astrophysical Journal, 811(2):151.
    202Pilling, S., E. S. Duarte, E. Da Silveira, E. Balanzat, H. Rothard, A. Domaracka, and P. Boduch
    2010. Radiolysis of ammonia­containing ices by energetic, heavy, and highly charged ions inside
    dense astrophysical environments. Astronomy & Astrophysics, 509:A87.
    Pilling, S., B. G. Nair, A. Escobar, H. Fraser, and N. Mason
    2014. The temperature effect on the glycine decomposition induced by 2 keV electron bombardment
    in space analog conditions. The European Physical Journal D, 68(3):58.
    Pontoppidan, K., H. Fraser, E. Dartois, W.­F. Thi, E. van Dishoeck, A. Boogert, L. d’Hendecourt, A. Tie­
    lens, and S. Bisschop
    2003. A m VLT spectroscopic survey of embedded young low mass stars I­Structure of the CO ice.
    Astronomy & Astrophysics, 408(3):981–1007.
    Pontoppidan, K. M., A. C. Boogert, H. J. Fraser, E. F. van Dishoeck, G. A. Blake, F. Lahuis, K. I. Öberg,
    N. J. Evans II, and C. Salyk
    2008. The c2d Spitzer spectroscopic survey of ices around low­mass young stellar objects. II. CO2.
    The Astrophysical Journal, 678(2):1005.
    Prasad, S. S. and S. P. Tarafdar
    1983. UV radiation field inside dense clouds ­ Its possible existence and chemical implications. The
    Astrophysical Journal, 267:603–609.
    Rapp, D. and D. D. Briglia
    1965. Total cross sections for ionization and attachment in gases by electron impact. II. negative­ion
    formation. The Journal of Chemical Physics, 43(5):1480–1489.
    Raunier, S., T. Chiavassa, F. Marinelli, and J.­P. Aycard
    2004. Experimental and theoretical study on the spontaneous formation of OCN– ion: reactivity
    between HNCO and NH3/H2O environment at low temperature. Chemical physics, 302(1­3):259–
    264.
    Raut, U., B. Teolis, M. Loeffler, R. A. Vidal, M. Fama, and R. Baragiola
    2007. Compaction of microporous amorphous solid water by ion irradiation. The Journal of chemical
    physics, 126(24):244511.
    Rawlings, J., D. Williams, S. Viti, C. Cecchi­Pestellini, and W. Duley
    2013. Episodic explosions in interstellar ices. Monthly Notices of the Royal Astronomical Society,
    430(1):264–273.
    Ribas, I., E. F. Guinan, M. Güdel, and M. Audard
    2005. Evolution of the solar activity over time and effects on planetary atmospheres. i. high­energy
    irradiances (1­1700 å). The Astrophysical Journal, 622(1):680.
    Sandford, S. A. and L. J. Allamandola
    1988. The condensation and vaporization behavior of H2O:CO ices and implications for interstellar
    grains and cometary activity. Icarus, 76(2):201–224.
    203
    Sandford, S. A. and L. J. Allamandola
    1993. Condensation and vaporization studies of CH3OH and NH3 ices: Major implications for astro­
    chemistry. The Astrophysical Journal, 417:815–825.
    Sekitani, T., E. Ikenaga, K. Tanaka, K. Mase, M. Nagasono, S.­i. Tanaka, and T. Urisu
    1997. Auger­electron­ion coincidence study of photon­stimulated ion desorption for condensed ace­
    tonitrile. Surface science, 390(1­3):107–111.
    Shulenberger, K. E., J. L. Zhu, K. Tran, S. Abdullahi, C. Belvin, J. Lukens, Z. Peeler, E. Mullikin, H. M.
    Cumberbatch, J. Huang, et al.
    2019. Electron­induced radiolysis of astrochemically relevant ammonia ices. ACS Earth and Space
    Chemistry, 3(5):800–810.
    Sicilia, D., S. Ioppolo, T. Vindigni, G. Baratta, and M. Palumbo
    2012. Nitrogen oxides and carbon chain oxides formed after ion irradiation of CO:N2 ice mixtures.
    Astronomy & Astrophysics, 543:A155.
    Sie, N.­E., G. M. Caro, Z.­H. Huang, R. Martín­Doménech, A. Fuente, and Y.­J. Chen
    2019. On the photodesorption of CO2 ice analogs: The formation of atomic C in the ice and the effect
    of the VUV emission spectrum. The Astrophysical Journal, 874(1):35.
    Smith, W. H. and G. E. Leroi
    1966. Infrared and Raman spectra of carbon suboxide in condensed phases. The Journal of Chemical
    Physics, 45(5):1767–1777.
    Solomon, P., K. Jefferts, A. Penzias, and R. Wilson
    1971. Detection of millimeter emission lines from interstellar methyl cyanide. The Astrophysical
    Journal, 168:L107.
    Strelnikov, D., R. Reusch, and W. Krätschmer
    2005. Assignment of carbon chain molecules in cryogenic matrices by selective laser­induced oxida­
    tion. The Journal of Physical Chemistry A, 109(34):7708–7713.
    Szczepanski, J., S. Ekern, C. Chapo, and M. Vala
    1996. Infrared spectroscopy of matrix­isolated carbon clusters, with emphasis on C8 and C9. Chemical
    physics, 211(1­3):359–366.
    Tam, S., M. Macler, and M. E. Fajardo
    1997. Matrix isolation spectroscopy of laser ablated carbon species in Ne, D2, and H2 matrices. The
    Journal of chemical physics, 106(22):8955–8963.
    Theule, P., F. Duvernay, A. Ilmane, T. Hasegawa, O. Morata, S. Coussan, G. Danger, and T. Chiavassa
    2011. Kinetics of the OCN– and HOCN formation from the HNCO + H2O thermal reaction in inter­
    stellar ice analogs. Astronomy & Astrophysics, 530:A96.
    Thompson, K., R. DeKock, and W. Weltner Jr
    1971. Spectroscopy of carbon molecules. IV. C4, C5, C6, (and C9). Technical report, Univ. of Florida,
    Gainesville.
    204Tiné, S., S. Lepp, R. Gredel, and A. Dalgarno
    1997. Infrared response of H2 to X­rays in dense clouds. The Astrophysical Journal, 481(1):282.
    Tratnik, H., N. Hilleret, and H. Störi
    2007. The desorption of condensed noble gases and gas mixtures from cryogenic surfaces. Vacuum,
    81(6):731–737.
    Trottier, A. and R. L. Brooks
    2004. Carbon­chain oxides in proton­irradiated CO ice films. The Astrophysical Journal, 612(2):1214.
    Unger, I., D. Hollas, R. Seidel, S. Thürmer, E. F. Aziz, P. Slavicek, and B. Winter
    2015. Control of X­ray induced electron and nuclear dynamics in ammonia and glycine aqueous
    solution via hydrogen bonding. The Journal of Physical Chemistry B, 119(33):10750–10759.
    Vala, M., T. Chandrasekhar, J. Szczepanski, and R. Pellow
    1989. Structure and infrared­spectroscopy of the C6 and C8 carbon clusters. HIGH TEMPERATURE
    SCIENCE, 27:19–30.
    Van Broekhuizen, F., J. Keane, and W. Schutte
    2004. A quantitative analysis of OCN– formation in interstellar ice analogs. Astronomy & Astro­
    physics, 415(2):425–436.
    van Broekhuizen, F. A., K. Pontoppidan, H. Fraser, and E. van Dishoeck
    2005. A 3–5 m VLT spectroscopic survey of embedded young low mass stars II­solid OCN. Astronomy
    & Astrophysics, 441(1):249–260.
    van der Marel, N., J. P. Williams, and S. Bruderer
    2018. Rings and gaps in protoplanetary disks: planets or snowlines? The Astrophysical Journal
    Letters, 867(1):L14.
    Van Dishoeck, E. F.
    2004. ISO spectroscopy of gas and dust: from molecular clouds to protoplanetary disks. Annu. Rev.
    Astron. Astrophys., 42:119–167.
    Van Orden, A., R. Provencal, F. Keutsch, and R. Saykally
    1996. Infrared laser spectroscopy of jet­cooled carbon clusters: The ν5 band of linear C9. The Journal
    of chemical physics, 105(15):6111–6116.
    Varetti, E. L. and G. C. Pimentel
    1971. Isomeric forms of dinitrogen trioxide in a nitrogen matrix. The Journal of Chemical Physics,
    55(8):3813–3821.
    Vinogradoff, V., F. Duvernay, G. Danger, P. Theulé, F. Borget, and T. Chiavassa
    2013. Formaldehyde and methylamine reactivity in interstellar ice analogues as a source of molecular
    complexity at low temperature. Astronomy & Astrophysics, 549:A40.
    Walsh, C., T. Millar, and H. Nomura
    2010. Chemical processes in protoplanetary disks. The Astrophysical Journal, 722(2):1607.
    205
    Walsh, C., H. Nomura, T. Millar, and Y. Aikawa
    2012. Chemical processes in protoplanetary disks. II. on the importance of photochemistry and X­ray
    ionization. The Astrophysical Journal, 747(2):114.
    Wang, H.­Y., X. Lu, R.­B. Huang, and L.­S. Zheng
    2002. Theoretical studies of XC n X (X= O, S, Se; n= 1–8): structures, spectroscopic properties, and
    dissociation energies. Journal of Molecular Structure: THEOCHEM, 593(1­3):187–197.
    Watanabe, N. and A. Kouchi
    2002. Measurements of conversion rates of CO to CO2 in ultraviolet­induced reaction of D2O
    (H2O)/CO amorphous ice. The Astrophysical Journal, 567(1):651.
    Watanabe, N., O. Mouri, A. Nagaoka, T. Chigai, A. Kouchi, and V. Pirronello
    2007. Laboratory simulation of competition between hydrogenation and photolysis in the chemical
    evolution of H2O­CO ice mixtures. The Astrophysical Journal, 668(2):1001.
    Wedlund, C. S., G. Gronoff, J. Lilensten, H. Ménager, and M. Barthélemy
    2011. Comprehensive calculation of the energy per ion pair or W values for five major planetary upper
    atmospheres. Ann. Geophys, 29:187–195.
    Weissberger, E., W. Breckenridge, and H. Taube
    1967. Reaction of O ( 1 d) with CO2 at low temperatures. The Journal of Chemical Physics, 47(5):
    1764–1769.
    Weltner Jr, W., P. Walsh, and C. Angell
    1964. Spectroscopy of carbon vapor condensed in rare­gas matrices at 4 and 20 K. I. The Journal of
    Chemical Physics, 40(5):1299–1305.
    Woon, D. E.
    2002. Pathways to glycine and other amino acids in ultraviolet­irradiated astrophysical ices determined
    via quantum chemical modeling. The Astrophysical Journal Letters, 571(2):L177.
    Wu, R., D. Judge, H. Chen, H. Lu, B. Cheng, et al.
    2003. EUV­VUV photolysis of mixed icy molecular systems at 10 K. In Bulletin of the American
    Astronomical Society, volume 35, P. 941.
    Yamada, H. and W. B. Person
    1964. Absolute infrared intensities of the fundamental absorption bands in solid CO2 and N2O. The
    Journal of Chemical Physics, 41(8):2478–2487.
    Zheng, W., D. Jewitt, and R. I. Kaiser
    2006. Formation of hydrogen, oxygen, and hydrogen peroxide in electron­irradiated crystalline water
    ice. The Astrophysical Journal, 639(1):534.
    Zheng, W., D. Jewitt, Y. Osamura, and R. I. Kaiser
    2008. Formation of nitrogen and hydrogen­bearing molecules in solid ammonia and implications for
    solar system and interstellar ices. The Astrophysical Journal, 674(2):1242.

    QR CODE
    :::