| 研究生: |
邱凱琳 Kai-Lin Chiou |
|---|---|
| 論文名稱: |
雙電解槽電解水產氫之參數分析 Parameter analysis of dual cell water electrolysis hydrogen production |
| 指導教授: |
洪勵吾
Lih-Wu Hourng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 水電解 、雙電解槽 、質子交換膜 |
| 外文關鍵詞: | water electrolysis, dual cell, proton exchange membrane |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水電解產氫是目前製造氫氣常用之方法,而氫氣具有乾淨且對環境友善的特性,在未來相當具發展潛力,若能結合工業用的酸鹼廢液產氫,可減少廢棄物的增生,達到清潔生產的目的。
本實驗使用鎳為電極片,並應用硫酸及氫氧化鉀兩種溶液為電解液與Nafion質子交換膜隔離雙槽,進行電解水產氫之研究。並應用恆電位儀及氣體流量計記錄所得到的數據資料,探討不同濃度、單雙槽、電解液的不同對輸入電流、產氫量及能源效率的影響,並以增加電解液溫度、使用不同Nafion質子交換膜,及降低電位等參數,以研析其對產氫量及能源效率的提升效果。
實驗結果顯示,雙槽使用恆電位儀在5.5V的電位下,並搭配Nafion質子交換膜N212,能源效率最高可達65.9%,就單雙槽之比較,在相同濃度0.25M或0.5M時,雙槽不同電解液的能源效率皆優於單槽。若做溫度提升,溫度達40 ℃時,能源效率可提升至68.1%,50 ℃可提升80.1%,而產氫量皆有明顯的增加,如改用Nafion質子交換膜N211,能源效率皆有提升,且最高可提升到80.7%。如果降低電位時能源效率也皆有明顯提升的現象,在3.5V時能源效率更可提升到89.9%。
Water electrolysis hydrogen production is a common method for hydrogen production currently. Since hydrogen has a clean and environmentally friendly feature, it has considerable potential to be the energy resource in the future. If acid and alkaline waste solutions are used to produce hydrogen for industrial use, it can reduce the proliferation of industry waste to achieve the purpose of clean production.
In this study, using nickel sheets as electrodes, and applying two solutions of sulfuric acid and potassium hydroxide as the electrolytes contained in dual cells which are separated by a Nafion proton exchange membrane, water electrolysis hydrogen production is studied. By the use of potentiostat and gas flow meter to record the experimental data, the effects of working parameters, such as concentrations, single or dual-cell, and kind of electrolytes, on the resulted current, hydrogen production and energy efficiency are investigated. In addition, the influences of electrolyte temperature, thickness of Nafion and applied voltage upon the enhancement of hydrogen production and energy efficiency are also studied.
Results show that dual cell using potentiaostat at 5.5V with a Nafion N212 yields a energy efficiency up to 65.9%. At concentration of 0.25M and 0.5M, energy efficiencies in dual cell with different electrolytes are superior to that in single-cell. If the temperature is increased to 40 ℃, the energy efficiency could be increased to 68.1%, while it could even be raised to 80.1% at 50 ℃. The amount of hydrogen production are also increased significantly at the same time. If proton exchange membrane Nafion N211 was used instead of Nafion N212, the energy efficiency was improved, and even as high as 80.7%. Energy efficiency can also be improved when the applied voltage is low, e.g. , as potential at 3.5V, the energy efficiency is even enhanced to 89.9%.
[1]G. W. Crabtree, M. S. Dresselhaus, and M. V. Buchanan, “Hydrogen Economy,” Physics Today, Vol. 57, pp. 39 (2004). http://www.physicstoday.org
[2]許嘉顯,磁場對多電極電解水產氫之影響,國立中央大學能源工程研究所碩士論文 (2015)。
[3]陳維新,能源概論第八版,高立出版社,Ch.8 (2015)。
[4]洪俊智,“「氫」經濟的發展與前瞻",鉅變新視界電子報。(2015-02-11),http://rsprc.ntu.edu.tw/zh-TW/
[5]A. R. Zeradjanin , A. A. Topalov, S. Cherevko, and G. P. Keeley, “ Sustainable generation of hydrogen using chemicals with regional oversupply-Feasibility of the electrolysis in acido-alkaline reactor,” International Journal of Hydrogen Energy, Vol. 39, pp. 16275-16281 (2014).
[6]R. F. de Souza, J. C. Padilha, R. S. Gonçalves, and J. Rault-Berthelot, “Dialkylimidazolium ionic liquids as electrolytes for hydrogen production from water electrolysis,” Electrochemistry Communications, Vol. 8, pp. 211-216 (2006).
[7]T. Take, K. Tsurutani, and M. Umeda, “Hydrogen production by methanol-water solution electrolysis,” Journal of Power Sources, Vol. 164, pp. 9-16 (2007).
[8]熊楚強等,電化學,大揚出版社,Ch.3-Ch.4 (1997)。
[9]M. P. M. Kaninski, D. P. Saponjic, V. M.Nikolic, D. L. Zugic, and G. S. Tasic, “Energy consumption and stability of the Ni-Mo electrodes for the alkaline hydrogen production at industrial conditions,” International Journal of Hydrogen Energy, Vol. 36, pp. 8864-8868 (2011).
[10]V. M. Nikolic, G. S. Tasic, A. D. Maksic , D. P. Saponjic , S. M. Miulovic, and M. P. M.Kaninski, “Raising efficiency of hydrogen generation from alkaline water electrolysis-Energy saving,” International Journal of Hydrogen Energy, Vol. 35, pp. 12369-12373 (2010).
[11]S. Cherevko , A. A.Topalov, A. R. Zeradjanin, G. P. Keeley, and K. J. J. Mayrhofer,“Temperature-dependent dissolution of polycrystalline platinum in sulfuric acid electrolyte,” Electrocatalysis, Vol. 5, pp. 235-240 (2014).
[12]P. K.Dubey, A. S. K.Sinha, S. Talapatra, N. Koratkar, P. M. Ajayan, and O. N. Srivastava, “Hydrogen generation by water electrolysis using carbon nanotube anode,” International Journal of Hydrogen Energy, Vol. 35, pp. 3945-3950 (2010).
[13]S. K. Mazloomi and N. Sulaiman, “Influencing factors of water electrolysis electrical efficiency,” Renewable and Sustainable Energy Reviews, Vol. 16, pp. 4257- 4263 (2012).
[14]Ryan O’Hayre等,王曉紅等編譯,燃料電池基礎,全華圖書有限公司印行,Ch.4 (2008).
[15]J. Payne (Partially From His Master's Research), “ Nafion-perfluorosulfonate ionomer,” http://www.psrc.usm.edu/mauritz/Nafion.html (April 2005).
[16]Y. S. Kawano , Y. Q. Wang, R. A. Palmer, and S. R. Aubuchon “Stress-strain curves of Nafion membranes in acid and salt forms,” Ciência e Tecnologia, n° 2 ,Vol. 12, pp. 96-101 (2002).
[17]H. Su, B. J. Bladergroen, S. Pasupathi, V. Linkov, and S. Ji, “Performance investigation of membrane electrode assemblies for hydrogen production by solid polymer electrolyte water electrolysis,” International Journal of Electrochemistry Science, Vol. 7, pp. 4223- 4234 (2012).
[18]P. Ridge, “Hydrogen manufacture by electrolysis, thermal decomposition and unusual techniques,” Noyes Data Corporation, New Jersey, M. S. Casper (1978).
[19]Q. Duan, H. Wang, and J. Benziger, “Transport of liquid water through Nafion membranes,” Journal of Membrane Science, Vol. 392-393, pp. 88-99 (2012).
[20]K. Richa, Buddhi D., and Sawhney R. L., “Studies on the effect of temperature of the electrolytes on the rate of production of hydrogen,"International Journal of Hydrogen Energy, Vol. 30, pp. 261 - 263, (2005).
[21]J. C. Ganley, “High temperature and pressure alkaline electrolysis,” International Journal of Hydrogen Energy, Vol. 34, pp. 3604-3611 (2008).
[22]A. Brisse, J. Schefold, and M. Zahid, “High temperature water electrolysis in solid oxide cells,” International Journal of Hydrogen Energy, Vol. 33, pp. 5375-5382 (2008).
[23]J. Udagawa, P. Aguiar, and N. P. Brandon, “Hydrogen production through steam electrolysis: Model-based steady state performance of a cathode-supported intermediate temperature solid oxide electrolysis cell,” Journal of Power Sources, Vol. 166, pp. 127-136 (2007).
[24]A. Caravaca, F. M. Sapountzi, A. De Lucas-Consuegra, C. Moleina-Mora, F. Dorado, and J. L. Valverde, “Electrochemical reforming of ethanol-water solutions for pure H2 production in PEM electrolysis,” International Journal of Hydrogen Energy, Vol. 37, pp. 9504-9513 (2012).
[25]P. Millet and S. Grigoriev, Water electrolysis technologies, Renewable hydrogen technologies, chapter 2, pp. 19-41 (2013).
[26]田福助,電化學基本原理與應用,五洲出版社,pp. 1-205 (2004)。
[27]魚崎浩平,喜多英明同撰,黃忠良譯,基本電化學,復漢出版社,pp.10-81 (1983)。
[28]J. Koryta, W. Dvorak, and L. Kavan, Principles of electrochemistry, Second edition, John Wiley and Sons, New York (1993).
[29]毛宗強,氫能-21世紀的綠色能源,新文京開發出版股份有限公司,pp.329-536 (2008)
[30]R. C. Reid, J. M. Prausnitz, and E. E. Poling, The Propertities of gases and liquids, Fourth edition, McGraw-Hill, New York (1987).
[31]J. M. Gras and P. Spiteri, “Corrosion of stainless steels and nickel based alloys for alkaline water electrolysis,” International Journal of Hydrogen Energy, Vol. 18, pp. 561-566 (1993).
[32]宋宛倫,超音波應用對於電解水產氫氣阻現象影響之研究,國立雲林科技大學環境與安全衛生工程系碩士論文 (2008)。
[33]沈世勳,質子交換膜產氫反應器與自加壓設計高壓性能研究,國 立中央大學機械工程研究所碩士論文 (2009)。