| 研究生: |
陳昆延 Kun-yan Chen |
|---|---|
| 論文名稱: |
探討光照強度及波長對於Chlorella sp.生產活性多醣 Effects of light intensity and light wavelength on the production of active polysaccharides by Chlorella sp. in batch cultures |
| 指導教授: |
徐敬衡
Chin-hang Shu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 光波長 、光強度 、小球藻 |
| 外文關鍵詞: | Chlorella sp., light intensity, light wavelength |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
小球藻Chlorella sp.因其具有相當高的營養價值且培養容易,所以是一種已商業化生產的微藻。由於能源危機慢慢浮現,可生產生質柴油的Chlorella sp.成為各國研究的重點之一,再加上近年來現代人對抗癌藥物的需求逐漸增加,所以可生產多醣體之Chlorella sp.漸漸受到重視,而Chlorella sp.因其具有葉綠素可捕捉光能,故光照對於Chlorella sp.生長的影響為一相當重要的因素。
有鑒於此,本研究將對於光照對Chlorella sp.生長之影響作深入之探討,設計以白光強度1000、2000、4000、6000、8000、10000 Lux時對於Chlorella sp.生長及產生胞內及胞外多醣體之影響;另外由Chlorella sp.的全波掃描圖可發現Chlorella sp.對光波長的主要吸收峰為藍光區及紅光區,故接著以藍光及紅光之LED燈進行單一色光對Chlorella sp.生長之影響。
白光實驗結果顯示Chlorella sp.在白光強度6000 Lux以下時,生長速率µ、胞內多醣(IPS)及胞外多醣(EPS)會隨強度增加而提高,而生長速率在4000 Lux時有最大值µ=0.07 hr-1,胞外多醣在6000 Lux時有30.41 mg L-1的多醣產量;胞內多醣則是在強度8000 Lux有52.12 mg L-1的最大產量;色光實驗方面,紅光可促進Chlorella sp.藻體的生長,在強度1000 Lux時有最大的藻體產量0.73 g L-1,而藍光則可以促使Chlorella sp.產生產物,在強度1000 Lux時有最好的胞內多醣產率0.55 mg L-1hr-1。
動物生物活性實驗方面,胞內多醣的生物活性較胞外多醣高,而以白光培養所得到之多醣體生物活性高於單一色光培養所得之多醣體,最好的生物活性為白光8000 Lux下培養所得之胞內多醣,其生物活性與螺旋藻的胞內多醣相比大約提升了22 %。
Chlorella sp. has used in the commercialization production because of it has many nutrition and easy to culture. In recent years, because the energy crisis reappears and Chlorella sp. can produce biodiesel, Chlorella sp. becomes the research key point of various countries. In addition, people increased to the demand of anticancer treatment medicine, so the research about Chlorella sp. takes seriously because it can produce activated polysaccharides. Chlorella sp. has the chlorophyll and is possible to absorb the light energy so light is a important factor effecting Chlorella sp. growth.
This research had studied illumination influence in Chlorella sp. growth. Experimental used different light intensity, included 1000, 2000, 4000, 6000, 8000, 10000 Lux to culture Chlorella sp. and produce polysaccharides, then used colored light, blue LED and red LED, culture Chlorella sp..
In light intensity experiment, polysaccharides production increased with light intensity raises, Chlorella sp. has the maximum specific growth rate 0.007 hr-1 in 4000 Lux. In polysaccharides production, 6000 Lux has the maximum extracellular polysaccharides 30.41 mg L-1 and 8000 Lux has the maximum intercellular polysaccharides 52.12 mg L-1. In colored light experiment, red light can promote Chlorella sp. growth and blue light promote product production, Both''s best light intensity is 1000 Lux.
In biological activity experiment, intercellular polysaccharides’s biological activity was better than extracellular polysaccharides. The best biological actived polysaccharides was intercellular polysaccharides culturing under 8000 Lux, which promoted the intercellular polysaccharides activity 22 % than Spirulina intercellular polysaccharides.
Arinaga S., Karimine N., Takamuku K., Nanbara S., Nagamatsu M., Ueo H., Akiyoshi T., Enhanced production of interleukin 1 and tumor necrosis factor by peripheral monocytes after lentinan administration in patients with gastric carcinoma. International Journal of Immunopharmacology. 14,No 1, 43-47 (1992).
Bedirli A., Kerem M., Ofluoglu E., Salman B., Katircioglu H., Bedirli N., Yilmazer D., Alper M., Pasaoglu H., Administration of Chlorella sp. microalgae reduces endotoxemia, intestinal oxidative stress and bacterial translocation in experimental biliary obstruction. Clinical Nutrition. 28, 674-678 (2009).
Blum K.S., Pabst R., Lymphocyte numbers and subsets in the human blood Do they mirror the situation in all organs?. Immunology Letters. 108, 45-51 (2007).
Bohn J.A., BeMiller J.N., (1→3)-β-D-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydrate Polymers. 28, 3-14 (1995).
Borowitzka M.A., Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of Biotechnology. 70, 313-321 (1999).
Chiu S.Y., Kao C.Y., Chen C.H., Kuan T.C., Ong S.C., Lin C.S., Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology. 99, 3389-3396 (2008).
Cleuvers M., Ratte H.T., The importance of light intensity in algal tests with coloured substances. Water research. 36, 2173-2178 (2002).
Converti A., Casazza A.A., Ortiz E.Y., Perego P., Borghi M.D., Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing. 48, 1146-1151 (2009).
Danesi E.D.G., Rangel-Yagui C.O., Carvalho J.C.M., Sato S., Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis. Biomass and Bioenergy. 26, 329-335 (2004).
Das P., Lei W., Aziz S.S., Obbard J.P., Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technology. 102, 3883-3887 (2011).
Deslandes Y., Marchessault R.H., Triple-Helical Structure of (1→3)-β-D-Glucan. Macromolecules. 13, 1466-1471 (1980).
Dionisio M.L., Tsuzuki M., Miyachi S., Blue light induction of carbonic anhydrase activity in chlamydomonas reinhardtii. Plant and cell physiology. 30, No 2, 215-219 (1989).
Gamal A.A.E., Biological importance of marine algae. Saudi Pharmaceutical Journal. 18, 1-25 (2010).
Heredia-Arroyo T., Wei W.,Hu B., Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Applied biochemistry and biotechnology. 162, No 7, 1978-1995 (2010).
Horn R., Grundmann G., Paulsen H., Consecutive Binding of Chlorophylls a and b During the Assembly in Vitro of Light-harvesting Chlorophyll-a/b Protein (LHCIIb). Journal of Molecular Biology. 366, 1045-1054 (2007).
Ip P.F., Chen F., Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochemistry. 40, 733-738 (2005).
Kalyanasundaram K., Graetzel M., Artificial photosynthesis:biomimetic approaches to solar energy conversion and storage. Current Opinion in Biotechnology. 21, 298-310 (2010).
Korbee N., Figueroa F.L., Aguilera J., Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta). Journal of photochemistry and photobiology B: Biology. 80, 71-78 (2005).
Laurinavichene T., Tolstygina I., Tsygankov A., The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. Journal of biotechnology. 114, 143-151 (2004).
Lee Y.K., Ding S.Y., Hoe C.H., Low C.S., Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. Journal of Applied Phycology. 8, 163-169 (1996).
Lehr F., Posten C., Closed photo-bioreactors as tools for biofuel production. Current Opinion in Biotechnology. 20, 280-285(2009).
Lejeune F.J., Ruegg C., Lienard D., Clinical applications of TNF-α in cancer. Current Opinion in Immunology. 10, 573-580 (1998).
Leung M.Y.K., Liu C., Koon J.C.M., Fung K.P., Polysaccharide biological response modifiers. Immunology Letters. 105, 101-114 (2006).
Makooil M., Reynolds J.T., Johansen H.W., Effect of glucose and light on cellulose content of Chlorella pyrenoidosa. Phytochemistry. 15, No 3, 367-369 (1976).
Maksimova I.V., Bratkovskaya L.B., Plekhanov S.E., Extracellular Carbohydrates and Polysaccharides of the Alga Chlorella pyrenoidosa Chick S-39. Biology Bulletin. 31, No 2, 175-181 (2004).
Mantovani M.S., Bellini M.F., Angeli J.P.F., Oliveira R.J., Silva A.F., Ribeiro L.R., β-Glucans in promoting health:Prevention against mutation and cancer. Mutation Research. 658, 154-161 (2008).
Matthijs H.C.P., Balke H., Hes U.M.V., Kroon B.M.A., Mur L.R., Binot R.A., Application of Light-Emitting Diodes in Bioreactors: Flashing Light Effects and Energy Economy in Algal Culture(Chlorella pyrenoidosa).Biotechnology and bioengineering. 50, 98-107 (1996).
Ogbonna J.C., Tanaka H., Light requirement and photosynthetic cell cultivation – Development of processes for efficient light utilization in photobioreactors. Journal of Applied Phycology. 12, 207-218 (2000).
Palleschi A., Bocchinfuso G., Coviello T., Alhaique F., Molecular dynamics investigations of the polysaccharide scleroglucan: first study on the triple helix structure. Carbohydrate research. 340, 2154-2162 (2005).
Pattanayak G.K.P., Biswal A.K., Biswal A.K., Reddy V.S., Tripathy B.C., Light-dependent regulation of chlorophyll b biosynthesis in chlorophyllide a oxygenase overexpressing tobacco plants. Biochemical and Biophysical Research Communications. 326, 466-471 (2005).
Petkov G., Garcia G., Which are fatty acids of the green alga Chlorella? Biochemical systematics and ecology. 35, 281-285 (2007).
Phukan M.M., Chutia R.S., Konwar B.K., Kataki R., Microalgae Chlorella as a potential bio-energy feedstock. Applied energy. In press.
Posten C., Design principles of photo-bioreactors for cultivation of microalgae. Engineering in Life Sciences. 9, No 3, 165-177 (2009).
Pugh N., Ross S.A., Elsohly H.N., Elsohly M.A., Pasco D.S., Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, aphanizomenon flos-aquae and Chlorella pyrenoidosa. Planta medica. 67, No 8, 737-742 (2001).
Pulz O., Photobioreactor: production system for phototrophic microorganisms. Applied Microbiology and Biotechnology. 57, No 3, 287-293 (2001).
Rosenberg J.N., Oyler G.A., Wilkinson L., Betenbaugh M.J., A green light for engineered algae:redirecting metabolism to fuel a biotechnology revolution. Current Opinion in Biotechnology. 19, 430-436 (2008).
Rout D., Mondal S., Chakraborty I., Islam S.S., The structure and conformation of a water-insoluble (1→3)-,(1→6)-β-D-glucan from the fruiting bodies of Pleurotus florida. Carbohydrate research. 343, 982-987 (2008).
Rout D., Mondal S., Chakraborty I., Pramanik M., Islam S.S., Chemical analysis of a new (1→3)-, (1→6)-branched glucan from an edible mushroom, Pleurotus florida. Carbohydrate research. 340, 2533-2539 (2005).
Rylander R., Lin R.H., (1→3)-β-D-glucan - relationship to indoor air-related symptoms, allergy and asthma. Toxicology. 152, 47-52 (2000).
Sheng J., Yu F., Xin Z., Zhao L., Zhu X., Hu Q., Preparation, identification and their antitumor activities in vitro of polysaccharides from Chlorella pyrenoidosa. Food Chemistry. 105, 533-539 (2007).
Shi X.M., Zhang X.W., Chen F., Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources.Enzyme and Microbial Technology. 27, 312-318 (2000).
Shi Y.,Sheng J., Yang F., Hu Q., Purification and identification of polysaccharide derived from Chlorella pyrenoidosa. Food Chemistry.103, 101-105 (2007).
ShuC.H., Peng J.C.,Tsai C.C., Effects of light intensity and light wavelength on the production of mycophenolic acid by Penicillium brevicompactum in batch cultures. Enzyme and microbial technology. 46, 466-471 (2010).
Sishi B.J.N., Engelbrecht A.M., Tumor necrosis factor alpha (TNF-α) inactivates the PI3-kinase/PKB pathway and induces atrophy and apoptosis in L6 myotubes. Cytokine. 54, 173-184 (2011).
Smith V.H., Sturm B.S.M., Noyelles F.J., Billings S.A., The ecology of algal biodiesel production. Trends in Ecology and Evolution. 25, No 5,301-309 (2009).
Spolaore P., Claire J.C., Duran E., Isambert A., Commercial Applications of Microalgae. Journal of bioscience and bioengineering. 101, No 2, 87-96 (2006).
Stone B.A., Evan N.A., Bonig I., Clarke A.E., The application of sirofluor, a chemically defined fluorochrome from aniline blue for the histochemical detection of callose. Protoplasma. 122, 191-195 (1984).
Sun L., Wang C., Shi Q., Ma C., Preparation of different molecular weight polysaccharides from Porphyridium cruentum and their antioxidant activities. International Journal of Biological Macromolecules. 45, 42-47 (2009).
Tam N.F.Y., Wong Y.S., Effect of ammonia concentrations on growth of chlorella vulgaris and nitrogen removal from media. Bioresource T echnology. 57, 45-50 (1996).
Tsang C.K., Lau P.S., Tam N.F.Y., Wong Y.S., Biodegradation capacity of tributyltin by two Chlorella species. Environmental pollution. 105, 289-297 (1999).
Wang H.X., Ng T.B., Liu W.K., Ooi V.E.C., Chang S.T., Polysaccharide-Peptide Complexes from the Cultured Mycelia of the Mushroom Coriolus versicolor and their Culture Medium Activate Mouse Lymphocytes and Macrophages. The international journal of biochemistry & cell biology. 28, No 5, 601-607 (1996).
Wang Y., Chen T., The biosynthetic pathway of carotenoids in the astaxanthin producing green alga Chlorella zofingiensis. World Journal of Microbiology and Biotechnology. 24, 2927-2932 (2008).
Yang C.Y., Liu Y., Zheng D., Zhu J.C., Dai J., Luminescence of aniline blue in hydrophobic cavity of BSA. Journal of photochemistry and photobiology A: Chemistry. 188, 51-55 (2007).
Yeh K.L., Chang J.S., Chen W.M., Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Engineering in Life Sciences.10, No 3,201-208 (2010).
You T., Barnett S.M., Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum.Biochemical engineering journal. 19, 251-258 (2004).
Young S.H., Jacobs R.R., Sodium hydroxide-induced conformational change in schizophyllan detected by the fluorescence dye, aniline blue. Carbohydrate research. 310, 91-99 (1998).
Zhang Z., Wang F., Wang X., Liu X., Hou Y., Zhang Q., Extraction of the polysaccharides from five algae and their potential antioxidant activity in vitro. Carbohydrate Polymer. 82, 118-121 (2010).