跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黎可桂
Le Khoe Qui
論文名稱: 應用CNC強力刮齒於螺旋面齒輪加工之數學模型建立
Mathematical Modeling of CNC Power Skiving Process for Manufacturing Helical Face Gears
指導教授: 吳育仁
Yu-Ren Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 70
中文關鍵詞: 螺旋面齒輪強力刮齒齒輪刮齒敏感度矩陣
外文關鍵詞: helical face gear, power skiving, gear skiving, sensitivity matrix
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今面齒輪加工一般使用插齒(Gear shaping)或滾齒(Gear hobbing)的方式來生產。目前已有多項研究提出應用強力刮齒加工技術於直齒面齒輪,然而尚未有將強力刮齒技術應用於螺旋面齒輪之相關研究。因此,本研究提出了將強力刮齒應用於螺旋面齒輪加工之數學模型。本研究對齒條進行修正來創成螺旋的強力刮齒刀具,並透過機台加工過程中,於各軸加入多項式方程式作為附加運動來調整數控機床之切削路徑,而後進行刮齒加工模擬面齒輪表面以求得具附加運動之多項式係數。此外,本研究利用Levenberg-Marquardt算法以及敏感度矩陣來計算面齒輪多項式係數及磨料餘量,進而達到精度等級為B6之齒面(ANSI/AGMA 2009-B01標準),最後透過數值範例來驗證所提出方法之實用性。


    Nowadays, face gears are machined by gear shaping or gear hobbing. Several studies have been conducted on applying gear skiving processes to generate "straight-tooth" face gears. Even so, a skiving methodology to manufacture "helical-tooth" face gears is not proposed yet. This study proposes a mathematical model for simulating helical face gears using the power skiving process. A helical skiving cutter is generated using a corrected rack. The cutting path on the CNC machine is then adjusted by adding additional motions in the form of polynomials. A skiving simulation is performed to attain the face gear surface with the specified polynomial coefficients. The Levenberg-Marquardt algorithm and sensitivity matrix are employed to calculate the new polynomial coefficients to attain the gear surfaces with the accuracy grade of B6, based on the (ANSI/AGMA 2009-B01 standard) and even grinding stocks. The numerical results and machining simulation results have verified the practicability of the proposed method.

    Abstract iv Acknowledgment v Table of Contents vi List of Tables viii List of Figures ix Nomenclature xi Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Literature review 2 1.3 Objectives and approaches 5 1.4 Thesis overview 5 Chapter 2 Mathematical model of the helical face-gear skiving process 7 2.1 Generation of the power skiving cutter 8 2.2 Helical face gear skiving process 13 Chapter 3 Correction for the tooth surface of skived helical face gear 18 3.1 Correction of the rack cutter 18 3.2 Sensitivity analysis of the tooth surface deviations concerning the machine-axis motion and modified rack 20 Chapter 4 Numerical examples 25 4.1 The tooth surface precision of the helical face gear without considering the grinding process 26 4.2 The tooth surface of skiving helical face gear with pre-defined grinding allowance 29 4.3 The generation of helical face gears with variable helix angles using the same skiving cutter 31 4.4 Generation of helical face gear with variable shaft angles using the same skiving tool 37 Chapter 5 VERICUT-based machining simulation verification 42 Chapter 6 Conclusions and Future works 47 6.1. Conclusion 47 6.2. Future works 47 References 50 Author profile 54

    [1] E. Olivoni, R. Vertechy, V. Parenti-Castelli, Power skiving manufacturing process: A review, Mechanism and Machine Theory. 175 (2022) 104955.
    ttps://doi.org/10.1016/j.mechmachtheory.2022.104955.
    [2] F. Klocke, Gear Cutting, in: The International Academy for Production Engineering, L. Laperrière, G. Reinhart (Eds.), CIRP Encyclopedia of Production Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014: pp. 569–576.
    https://doi.org/10.1007/978-3-642-20617-7_6405.
    [3] Development of New Method to Cut Internal Gear, (n.d.).
    [4] Alfonso Fuentes Faydor L. Litvin, Ignacio Gonzalez-Perez, Alessandro Piscopo, and Paolo Ruzziconi, University of Chicago, Chicago, Illinoi, Face Gear Drive With Helical Involute Pinion: Geometry, Generation by a Shaper and a Worm, Avoidance of Singularities and Stress Analy, n.d.
    ttps://www.researchgate.net/publication/24329648_Face_Gear_Drive_With_Helical_Involute_Pinion_Geometry_Generation_by_a_Shaper_and_a_Worm_Avoidance_of_Singularities_and_Stress_Analysis.
    [5] F.L. Litvin, J.-C. Wang, R.B. Bossler, Y.-J.D. Chen, G. Heath, D.G. Lewicki, Application of Face-Gear Drives in Helicopter Transmissions, Journal of Mechanical Design. 116 (1994) 672–676. https://doi.org/10.1115/1.2919434.
    [6] S. Mo, S. Wang, B. Luo, H. Bao, G. Cen, Y. Huang, Research on the skiving technology of face gear, Int J Adv Manuf Technol. 121 (2022) 5181–5196.
    https://doi.org/10.1007/s00170-022-09663-6.
    [7] S. Mo, S. Wang, B. Luo, Z. Liu, G. Cen, Y. Huang, Machining principle and cutter design of face gear skiving, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 237 (2023) 468–480.
    https://doi.org/10.1177/09544054221101772.
    [8] Z. Han, C. Jiang, X. Deng, Machining and meshing analysis of face gears by power skiving, JAMDSM. 16 (2022) JAMDSM0002–JAMDSM0002.
    https://doi.org/10.1299/jamdsm.2022jamdsm0002.
    [9] H. Guo, T. Ma, S. Zhang, N. Zhao, A. Fuentes-Aznar, Computerized generation and surface deviation correction of face gear drives generated by skiving, Mechanism and Machine Theory. 173 (2022) 104839.
    https://doi.org/10.1016/j.mechmachtheory.2022.104839.
    [10] G. Feng, Z. Xie, M. Zhou, Geometric design and analysis of face-gear drive with involute helical pinion, Mechanism and Machine Theory. 134 (2019) 169–196.
    https://doi.org/10.1016/j.mechmachtheory.2018.12.020.
    [11] F.L. Litvin, A. Fuentes, Gear Geometry and Applied Theory, 2nd ed., Cambridge University Press, 2004.
    https://doi.org/10.1017/CBO9780511547126.
    [12] F.L. Litvin, A. Fuentes, C. Zanzi, M. Pontiggia, R.F. Handschuh, Face-gear drive with spur involute pinion: geometry, generation by a worm, stress analysis, Computer Methods in Applied Mechanics and Engineering. 191 (2002) 2785–2813.
    https://doi.org/10.1016/S0045-7825(02)00215-3.
    [13] F.L. Litvin, I. Gonzalez-Perez, A. Fuentes, D. Vecchiato, B.D. Hansen, D. Binney, Design, generation and stress analysis of face-gear drive with helical pinion, Computer Methods in Applied Mechanics and Engineering. 194 (2005) 3870–3901. https://doi.org/10.1016/j.cma.2004.09.006.
    [14] D.A. Binney, H. Vinayak, Y. Gmirya, L.M. Zunski, D.R. Houser, E.C. Ames, Face Gear Transmission Development Program at Sikorsky Aircraft, in: Volume 4: 9th International Power Transmission and Gearing Conference, Parts A and B, ASMEDC, Chicago, Illinois, USA, 2003: pp. 307–313. https://doi.org/10.1115/DETC2003/PTG-48039.
    [15] H.A. Zschippang, S. Weikert, K.A. Küçük, K. Wegener, Face-gear drive: Geometry generation and tooth contact analysis, Mechanism and Machine Theory. 142 (2019) 103576. https://doi.org/10.1016/j.mechmachtheory.2019.103576.
    [16] X. Chu, Y. Wang, S. Du, Y. Huang, G. Su, D. Liu, L. Zang, An efficient generation grinding method for spur face gear along contact trace using disk CBN wheel, Int J Adv Manuf Technol. 110 (2020) 1179–1187. https://doi.org/10.1007/s00170-020-05927-1.
    [17] Y. Shen, J. Tong, Technology of Gear Shaping of Face Gear and Experimental Studies, in: 2010 International Conference on Digital Manufacturing & Automation, IEEE, Changcha, TBD, China, 2010: pp. 609–612. https://doi.org/10.1109/ICDMA.2010.167.
    [18] Y.-Z. Wang, Z. Lan, L.-W. Hou, H.-P. Zhao, Y. Zhong, A generating milling method for a spur face gear using a five-axis computer numerical control milling machine, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 230 (2016) 1440–1450. https://doi.org/10.1177/0954405415619346.
    [19] E. Guo, R. Hong, X. Huang, C. Fang, Research on the design of skiving tool for machining involute gears, J Mech Sci Technol. 28 (2014) 5107–5115.
    https://doi.org/10.1007/s12206-014-1133-z.
    [20] J.-F. Hochrein, M. Trübswetter, M. Otto, K. Stahl, Direct flank geometry calculation for face gears, Forsch Ingenieurwes. 86 (2022) 617–625. https://doi.org/10.1007/s10010-021-00505-7.
    [21] Y. Wang, L. Hou, Z. Lan, C. Wu, Q. Lv, X. Zhao, A precision generating hobbing method for face-gear based on worm hob, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 231 (2017) 1057–1071. https://doi.org/10.1177/0954406216631373.
    [22] W. Sheng, J. Zhao, Z. Li, H. Zhang, R. Zhu, Geometric Design of a Face Gear Drive with Low Sliding Ratio, Applied Sciences. 12 (2022) 2936.
    https://doi.org/10.3390/app12062936.
    [23] E. Guo, R. Hong, X. Huang, C. Fang, A correction method for power skiving of cylindrical gears lead modification, J Mech Sci Technol. 29 (2015) 4379–4386.
    https://doi.org/10.1007/s12206-015-0936-x.
    [24] Y.-P. Shih, Y.-J. Li, A Novel Method for Producing a Conical Skiving Tool With Error-Free Flank Faces for Internal Gear Manufacture, Journal of Mechanical Design. 140 (2018) 043302.
    https://doi.org/10.1115/1.4038567.
    [25] E. Guo, R. Hong, X. Huang, C. Fang, A novel power skiving method using the common shaper cutter, Int J Adv Manuf Technol. 83 (2016) 157–165.
    https://doi.org/10.1007/s00170-015-7559-3.
    [26] T.-T. Luu, Y.-R. Wu, A novel correction method to attain even grinding allowance in CNC gear skiving process, Mechanism and Machine Theory. 171 (2022) 104771.
    https://doi.org/10.1016/j.mechmachtheory.2022.104771.
    [27] C.-Y. Tsai, Power-skiving tool design method for interference-free involute internal gear cutting, Mechanism and Machine Theory. 164 (2021) 104396.
    https://doi.org/10.1016/j.mechmachtheory.2021.104396.
    [28] T.-T. Luu, Y.-R. Wu, A novel approach to attain tooth flanks with variable pressure and helical angles utilizing the same cutter in the CNC gear skiving process, Int J Adv Manuf Technol. 123 (2022) 875–902. https://doi.org/10.1007/s00170-022-10220-4.
    [29] Z. Guo, R. Xie, W. Guo, W. Han, F. Gao, Y. Zhang, A Novel Method for Improving the Skiving Accuracy of Gears with Profile and Lead Modifications, Machines. 11 (2023) 87. https://doi.org/10.3390/machines11010087.
    [30] S. Mo, S. Wang, B. Luo, H. Bao, G. Cen, Y. Huang, Research on the skiving technology of face gear, Int J Adv Manuf Technol. 121 (2022) 5181–5196.
    https://doi.org/10.1007/s00170-022-09663-6.
    [31] Z. Han, C. Jiang, X. Deng, Machining and meshing analysis of face gears by power skiving, JAMDSM. 16 (2022) JAMDSM0002–JAMDSM0002.
    https://doi.org/10.1299/jamdsm.2022jamdsm0002.
    [32] H. Guo, T. Ma, S. Zhang, N. Zhao, A. Fuentes-Aznar, Computerized generation and surface deviation correction of face gear drives generated by skiving, Mechanism and Machine Theory. 173 (2022) 104839.
    https://doi.org/10.1016/j.mechmachtheory.2022.104839.
    [33] S. Mo, S. Wang, B. Luo, Z. Liu, G. Cen, Y. Huang, Machining principle and cutter design of face gear skiving, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 237 (2023) 468–480.
    https://doi.org/10.1177/09544054221101772.
    [34] Bevel gear classification, tolerances, and measuring methods, American Gear Manufacturers Association, Alexandria, Va., 2001.
    [35] V.-Q. Tran, Y.-R. Wu, A novel method for closed-loop topology modification of helical gears using internal-meshing gear honing, Mechanism and Machine Theory. 145 (2020) 103691. https://doi.org/10.1016/j.mechmachtheory.2019.103691.

    QR CODE
    :::