| 研究生: |
張忠達 Chung-ta Chang |
|---|---|
| 論文名稱: |
隨機趨勢或確定趨勢?結構性斷裂對台灣GDP時間序列的影響 STOCHASTIC OR DETERMINISTIC TRENDS?THE INFLUENCE OF STRUCTURAL BREAK FOR TAIWAN’S GDP TIME SERIES |
| 指導教授: |
劉錦龍
Jin-long Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 產業經濟研究所在職專班 Executive Master of Industrial Economics |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 單根現象 、斷裂點 、結構性斷裂 、單根 、模擬樣本 |
| 外文關鍵詞: | unit root, simulated sample, unit root phenomenon, structural break, breakpoint |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的在於探討台灣GDP年資料是呈現隨機趨勢或確定趨勢,並探討結構性斷裂對總體經濟景氣波動之涵義。
本文利用台灣1951年至2006年的實質GDP年資料,分別採用Perron(1989)與Zivot and Andrews(1992)的模型進行模擬樣本分析:首先建構最佳適配模型,再進行樣本模擬,並檢視模擬樣本的單根數值所呈現的分配型態。
研究結果顯示台灣的GDP時間序列確實受到結構性斷裂的影響,但仍無法拒絕單根的存在。
The purpose of this research investigates the influence between stochastic and deterministic trends on Taiwan’s GDP annual data, exploring the implications of structural break for macroeconomic fluctuations.
This paper applies the models of Perron (1989 ) and Zivot & Andrews (1992 ) to construct the simulation sample of Taiwan real GDP annual data from 1951 to 2006, reviewing the distribution type of the value of unit root test by first forming the best adaptable models, then using sample simulation process to identifying the test statistics.
The empirical results show that Taiwan GDP time series could not reject the existence of unit root and that it is indeed influenced by structural breaks.
[1]楊奕農,時間序列分析-經濟與財務上之應用,雙葉書廊有限公司,台北,民國94年4月。
[2]徐之強(2001),「多次結構變動下趨勢穩定與差分穩定之認定-台灣總體資料實證研究」,經濟論文,29:3,321-339。
[3]李政峰、何祖平(2001),「隨機趨勢抑或確定趨勢?在探台灣國民所得數列」,經濟論文,29:3,341-364。
[4]Chiang, A.C. and K. Wainwright (2005), Fundamental Methods of Mathematical Economics, New York : McGraw-Hill, Inc.
[5]Cochrane, J.H.(1988), “How Big Is the Random Walk in GNP?” The Journal of Political Economy, 96, 893-920.
[6]Dickey, D. A. and W. A. Fuller (1979), “Distribution of the Estimators for Autoregressive Time Series With a Unit Root, ” Journal of the American Statistical Association, 74, 427-431.
[7Dickey, D. A. and W. A. Fuller (1981), “Likelihood Ratio Statistics for Autoregressive Time Series With a Unit Root, ” Econometrica, 49, 1057-1072.
[8]Elder, J. and P. E. Kennedy(2001),“Testing for Unit Roots: What Should Students Be Taught?” The Journal of Economic Education, 32, 137-146.
[9]Enders, W.(2004),Applied Econometric Time Series, New York : John Wiley & Sons, Inc.
[10]Murray, C.J and C.R. Nelson(2000), “The uncertain trend in U.S. GDP,” Journal of Monetary Economics , 46, 79-95.
[11]Nelson, C. and C. Plosser (1982), “Trends and random walks in macroeconomic time series: Some evidence and implications,” Journal of Monetary Economics, 10,139-162.
[12]Perron, P.(1989)“The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis,” Econometrica, 57, 1361-1401.
[13]Phillips, P. C. B.(1987)“Time Series Regression with a Unit Root,” Econometrica, 55, 277-301.
[14]Phillips, P.C.B.and P. Perron(1988), “Testing for a Unit Root in Time Series Regression,” Biometrika , 75,335-346.
[15]Rudebusch, G. D.(1993),“Trends and Random Walks in Macroeconomic Time Series: A Re-Examination,” International Economic Review , 33, 661-680.
[16]Rudebusch, G.D.(1993),“The uncertain unit root in real GNP,” American Economic Review ,83,264-272.
[17]Wooldridge, J.M.(2003),Introductory Econometrics:A Modern Approach, Ohio : South-Western, Inc.
[18]Zivot, E. and D.W.K. Andrews(1992),“Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis,” Journal of Business & Economic Statistics,10,251-270.