跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃崢翔
Jian-Xian Huang
論文名稱: 封閉區間內柱狀多孔質熱源之自然對流系統
指導教授: 林孝宗
Shaw-Chong Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 95
中文關鍵詞: 自然對流多孔質
外文關鍵詞: free convection, porous
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究所探討的物理系統為在密閉的圓筒形空間內充滿牛頓流體,內部擺置五個排成十字形陣列的多孔質圓柱體。圓筒高度維持不變,內部的多孔質圓柱體高度與圓筒高度呈比例變化。圓筒的壁面維持等溫,而多孔質則由內部產生均勻的熱量。
    在研究方法上,利用計算流體力學軟體Fluent,來求解此種特殊的自然對流系統。將所得的數值結果,以圖表的方式就系統的主要控制參數(雷立數、高度比、達西數)對流動與熱傳的影響,進行分析與探討。
    本文發現當雷立數增加時,對於系統內流場與溫度場皆有較大影響力。在高雷立數時,自然對流效應增強流速變快,流體流動愈趨複雜,同時熱量由均勻向四周壁面散熱,轉變為向圓筒上方頂壁散熱。當圓筒與多孔質圓柱之高度比為4時,流體流動會由外圍向系統中心流動。當達西數增加時,雖然流場與溫度場結構會有改變,但其影響力並不如雷立數影響來的大。


    摘要…………………………………………………………...Ⅰ 致謝…………………………………………………………...Ⅱ 目錄…………………………………………………………...Ⅲ 圖目錄………………………………………………………...Ⅴ 表目錄…………………………………………………...…ⅩⅠ 符號說明………………………………………………...…ⅩⅡ 第一章 緒論……………………………………………….…1 一. 研究多孔質重要性……………………………………………..1 二. 相關研究之文獻回顧…………………………………………..1 三. 研究動機及目的………………………………………………..3 四. 本論文之架構…………………………………………………..4 第二章 系統描述與理論分析……………………………...5 一. 系統描述………………………………………………………..5 二. 多孔質中的流動模式…………………………………………..8 三. 基本假設………………………………………………………10 四. 系統方程式及邊界條件……………………………………….11 五. 無因次化……………………………………………………....13 六. 系統參數值……………………………………………………17 第三章 數值步驟與方法………………………………….18 一. 數值分析步驟…………………………………………………18 二. 數值方法………………………………………………………20 三. 格點分佈………………………………………………………22 第四章 結果與討論……………………………………….26 一. 雷立數的影響…………………………………………………26 二. 達西數的影響…………………………………………………33 三. 高度比的影響…………………………………………………34 第五章 綜合結論與未來展望…………………………….92 一. 綜合結論………………………………………………………92 二. 未來展望………………………………………………………93 參考文獻…………………….…………………………….….94

    1. H. J. Weinitschke, K. Nandakumar and S. R. Sanker, “A bifurcation study of convective heat transfer in porous media”, Phys. Fluid, Vol. A 2, pp. 912-921, 1990.
    2. H. Viljoen and V. Hlavacek, “Chemically driven convection in a porous medium”, A.I.Ch.E. J., Vol. 33, pp.1344-1350, 1987.
    3. S. Subramanian and V. Balakotaiah, “Mode interaction in reaction-driven convection in a porous medium”, Chem. Engng. Sci., Vol. 50, pp. 1851-1866, 1995.
    4. D. Poulikakos, “Double-diffusive convection in a horizontally sparsely packed porous layer”, Int. Commun. Heat Mass Transfer , Vol. 13, pp. 587-598, 1986.
    5. F. Alavyoon , Y. Masuda and S. Kimura, “On natural convection in vertical porous enclosures due to opposing fluxes of heat and mass prescribed at the vertical walls”, Int. J. Heat Mass Transfer, Vol. 37, pp. 195-260, 1994.
    6. M. Mamou, P. Vasseur and E. Bilgen, “Multiple solution for double-diffusive convection in a vertical porous enclosure”, Int. J. Heat Mass Transfer, Vol. 38, pp. 1787-1798, 1995.
    7. J. Pallares, I. Cuesta, F. X. Grau and F. Giralt, “Natural convection in a cubical cavity heated from below at low Rayleigh numbers, Int. J. Heat Mass Transfer, Vol. 39, pp. 3233-3247, 1996.
    8. Y. F. Rao and B. X. Wang, “Natural convection in vertical porous enclosures with internal heat generation”, Int. J. Heat Mass Transfer, Vol. 34, pp. 247-252, 1991.
    9. J. J. Royer and L. Flores, “Two-dimensional natural convection in an anisotropic and heterogeneous porous medium with internal heat generation”, Int. J. Heat Mass Transfer, Vol. 34, pp. 1387-1399, 1994.
    10. C. Beckermann, R. Viskanta and S. Ramadhyani, “Natural convection in vertical enclosures containing simultaneously fluid and porous layers”, J. Fluid Mech., Vol. 186, pp. 257-284, 1988.
    11. F. Chen and C. F. Chen, “Convection in superposed fluid and porous layers”, J. Fluid Mech., Vol. 234, pp. 97-119, 1992.
    12. S. J. Kim and C. Y. Choi, “Convective heat transfer in porous and overlaying fluid layers heated from below”, Int. J. Heat Mass Transfer, Vol. 39, pp. 319-329, 1996.
    13. T. Nishimura, T. Takumi, M. Shiraishi, Y. Kawamura and H. Ozoe, “Numerical analysis of natural convection in a rectangular enclosure horizontally divided into fluid and porous regions”, Int. J. Heat Mass Transfer, Vol. 29, pp. 889-898, 1986.
    14. D. Poulikakos, “Thermal instability in a horizontal fluid layer superpose on a heat-generating porous bed”, Num. Heat Transfer, Vol. 12, pp. 83-99, 1987.
    15. K. Vafai and R. Thiyagaraja, “Analysis of flow and heat transfer at the interface region of a porous medium, Int. J. Heat Mass Transfer, Vol. 30, pp. 1391-1405, 1987.
    16. G. Neale and W. Nader, “Practical significance of Brinkman extension of Darcy''s law: coupled parallel flows within a chemical and a boundary porous medium”, Can. J. Chem. Engng, Vol. 52, pp. 472-478, 1974.
    17. J. J. Jou, K. Y. Kung and C. H. Hsu, “Thermal stability of horizontally superposed porous and fluid layers in a rotating system”, Int. J. Heat Mass Transfer, Vol. 39, pp. 1847-1857, 1996.
    18. 陳耀漢, “發熱多孔質在密閉區間中之多重穩態自然對流”, 中央大學化工所博士論文, 1997.
    19. A. K. Singh, T. Paul and G. R. Thorpe, “Natural-convection due to heat and mass transfer in a composite system”, Heat and mass transfer, Vol. 35, pp. 39-48, 1999.

    QR CODE
    :::