| 研究生: |
鄧軒宇 Hsuan-yu Teng |
|---|---|
| 論文名稱: |
Sn-3.5Ag-0.5Cu無鉛銲錫受階梯狀負荷之潛變性質 Creep Properties of Sn-3.5Ag-0.5Cu Lead-Free Solder under Step-Loading |
| 指導教授: |
林志光
Chih-Kuang Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 次序效應 、無鉛銲錫 、潛變 |
| 外文關鍵詞: | sequence effect, creep, lead-free solder |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主旨在探討電子構裝用Sn-3.5Ag-0.5Cu無鉛銲錫受階梯狀負荷的潛變行為以及求出一套適合此潛變行為的壽命評估模式。潛變實驗採固定溫度下受二階段應力以及固定應力下受二階段溫度兩種方式進行,並利用掃描式電子顯微鏡(SEM)來觀察此無鉛銲錫之潛變破壞特徵。
實驗結果顯示,此款無鉛銲錫在受兩階段應力或溫度的潛變狀況下,由於負荷大小的次序不同,的確會對材料造成不同程度的損害累積。在本實驗中,第一階段負荷條件切換至第二階段負荷條件時,由高到低的負荷次序會比由低到高的負荷次序在第二階段對材料產生更大的損害。此外,受階梯狀負荷時,對於由高到低的負荷次序,其在第二階段的潛變速率會高於受同負荷條件的單一負荷之潛變速率。然而,在由低到高的負荷次序下,第二階段的潛變速率相較於所對應的單一負荷潛變速率,並無明顯的不同。常用的線性損壞模式無法提供此款無鉛銲錫材料準確的壽命預測,亦無法描述不同負荷次序對潛變壽命所造成的不同影響。本文所提出一修正型非線性潛變損害累積模式,對此種材料在受二階階梯狀負荷下可提供合理的壽命預測,也正確的描述負荷次序對材料損害及壽命產生的效應,即是,壽命比率值的總合對在低至高的負荷次序下,會大於由高至低的負荷次序。
由SEM觀察破斷後的試棒得知,在破斷的表面可以發現相當數量的延性小孔洞。此外,在此款無鉛銲錫中可發現許多微小孔洞以及微裂縫會形成在相界以及介金屬與錫基的界面上,應為潛變損害的起始處。
The purpose of this study is to investigate the creep behavior and develop a suitable creep damage model for a lead-free Sn-3.5Ag-0.5Cu solder alloy subjected to variable-step creep loading. Creep tests were conducted under two-step loading with various combinations of stress and/or temperature. Fractography analysis with scanning electron microscopy (SEM) was conducted to determine the creep fracture mechanism for the given solder.
Experimental results showed existence of sequence effects on cumulative creep damage for the given ternary alloy under two-step loading or temperature. A high-low sequence is more damaging than a low-high sequence for all given two-step loading/temperature conditions. Furthermore, the creep rate in the second step of a high-low sequence was greater than the corresponding one under single-step loading while no significant difference in creep rate was observed in the second step of a low-high sequence compared with the corresponding one under single-step loading. The linear damage rule could not be applied to predict lifetime and describe sequence effect for the given lead-free solder under varying-step creep loading. A nonlinear cumulative creep damage model was proposed and made reasonably good predictions of creep lifetime for all the given two-step creep testing conditions. This model also predicts the sequence effects that a low-high step loading would produce a larger sum of lifetime fraction than a high-low one.
SEM observations indicated there existed microvoids on the creep fracture surfaces. Creep microvoids and microcracks were found to nucleate at phase boundaries and interfaces between intermetallic compound and Sn matrix for the given Sn-3.5Ag-0.5Cu solder alloy.
1. H. H. Manko, Solder and Soldering, 2nd Ed., McGraw-Hill, Inc., New York, 1979.
2. W. J. Plumbridge, “Review: Solders in Electronics,” Journal of Materials Science, Vol. 31, 1996, pp. 2501-2514.
3. W. J. Plumbridge, “Structural Integrity in Electronics,” Fatigue and Fracture of Engineering Materials and Structures, Vol. 27, 2004, pp. 723-734.
4. 菅沼 克昭, 鉛付技術, 工業調查會, 日本, 2001. (日文)
5. Lead-Free Solder Project Final Report, NCMS Report 0401RE96, National Center for Manufacturing Sciences, Michigan, 1997.
6. E. P. Wood, “ In Search of New Lead-Free Electronic Solders,” Journal of Electronic Materials, Vol. 23, 1994, pp. 709-714.
7. B. Richards and K. Nimmo, “An Analysis of the Current Status of Lead-Free Soldering: Update 2000,” UK Department of Trade and Industry, London, 2000.
8. M. R. Harrison and J. H. Vincent, “IDEALS: Improved Design and Environment Aware Manufacturing of Electrics Assemblies by Lead-Free Soldering,” pp. 98-104 in Proceeding of the 12th Microelectronics and Packing Conference, IMAPS Europe, Cambridge, 1999.
9. Report on Research and Development on Lead-Free Soldering, Japan Electronic Industry Development Association, Tokyo, 2000.
10. Alloy Phase Diagrams, ASM Handbook, Vol. 3, ASM International, Materials Park, OH, 1992, pp. 2.1-2.260.
11. M. McCormack, S. Jin, G. W. Kammlott, and H. S. Chen, “New Pb-Free Solder Alloy with Superior Mechanical Properties,” Applied Physics Letters, Vol 63, 1993, pp. 15-17.
12. IPC Roadmap: A Guide for Assembly of Lead-Free Electronics, 4th Draft, IPC, Northbrook, IL, June, 2000.
13. W. Yang, L. E. Feltion, and R. W. Messler, “The Effect of Soldering Process Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints,” Journal of Electronic Materials, Vol. 24, 1995, pp. 1465-1472.
14. T. B. Massalski, Binary Alloy Phase Diagrams, 2nd Ed., ASM International, Ohio, 1990, p. 1409.
15. Y. Kariya and M. Otsuka, “Mechanical Fatigue Characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn, and In) Solder alloys,” Journal of Electronic Materials, Vol. 27, 1998, pp. 1229-1235.
16. V. I. Igoshev, J. I. Kleiman, D. Shangguan, S. Wong, and U. Michon, “Fracture of Sn-3.5%Ag Solder Alloy under Creep,” Journal of Electronic Materials, Vol. 29, 2000, pp. 1356-1361.
17. W. J. Plumbridge, C. R. Gagg, and S. Peters, “The Creep of Lead-Free Solders at Elevated Temperatures,” Journal of Electronic Materials, Vol. 30, 2001, pp. 1178-1183.
18. S. G.. Jadhav, T. R. Bieler, K. N. Subramanian, and J. P. Lucas, “Stress Relaxation Behavior of Composite and Eutectic Sn-Ag Solder Joints,” Journal of Electronic Materials, Vol. 30, 2001, pp. 1197-1205.
19. M. R. Harrison, J. H. Vincent, and H. A. H. Steen, “Lead-Free Reflow Soldering for Electronics Assembly,” Soldering and Surface Mount Technology, Vol. 13, 2001, pp. 21-38.
20. L. Ye, Z. H. Lai, J. Liu, and A. Thoen, “Microstructure Investigation of Sn-0.5Cu-3.5Ag and Sn-3.5Ag-0.5Cu-0.5B Lead-Free Solders,” Soldering and Surface Mount Technology, Vol. 13, 2001, pp. 16-20.
21. S. Chada, A. Hermann, W. Laub, R. Fournelle, and A. Achar,. “Microstructural Investigation of Sn-Ag and Sn-Pb-Ag Solder Alloys,” Solder and Surface Mount Technology, Vol. 9, 1997, pp. 9-13.
22. K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A. Handwerker, “Experimental and Thermodynamic Assessment of Sn-Ag-Cu Solder Alloys,” Journal of Electronic Material, Vol. 29, 2000, pp. 1122-1136.
23. C. M. Miller, I. E. Anderson, and J. F. Smith, “A Viable Tin-Lead Subsitute: Sn-Ag-Cu,” Journal of Electronic Materials, Vol. 23, 1994, pp. 595-601.
24. M. Li, K. Lee, D. Oisen, W. Chen, B. Tan, and S. Mhaisalkar, “Microstructure, Joint Strength and Failure Mechanisms of SnPb and Pb-Free Solders in BGA Packages,” IEEE Transactions on Electronic Package Manufacture, Vol. 25, 2002, pp.185-192.
25. K. Jonnalagadda, M. Peter, and A. Skipor, “Mechanical Bend Fatigue Reliability of Lead-Free PBGA Assemblies,” pp. 915-918 in Thermomechanical Phenomena in Electronic Systems -Proceedings of the Intersociety Conference, IEEE, Inc., San Diego, CA, USA, 2002.
26. J. H. Lau, Solder Joint Reliability-Theory and Applications, Van Nostrand Reinhold, New York, USA, 1991.
27. R. P. Skelton, High Temperature Fatigue: Properties and Prediction, Elsevier Applied Science, New York, USA, 1987.
28. H. G. Song, J. W. Morris, Jr., and F. Hua, “Anomalous Creep in Sn-Rich Solder Joints,” Materials Transactions, Vol. 43, 2002, pp. 1874-1853.
29. M. L. Huang and L. Wang, “Creep Behavior of Eutectic Sn-Ag Lead-Free Solder Alloy,” Journal of Materials Research, Vol. 17, 2002, pp. 2897-2903.
30. D. Y. Chu, “Creep Behavior of Sn-3.5Ag and Sn-3.5Ag-0.5Cu Lead-Free Solders,” M.S. Thesis, National Central University, Jhong-Li, Taiwan, 2004.
31. J. E. Dorn and L. A. Shepard, “What We Need to Know About Creep,” pp. 3-30 in Symposium on Effect of Cyclic Heating and Stressing on Metals at Elevated Temperatures, ASTM Special Technical Publications 165, American Society for Testing and Materials, Philadelphia, USA, 1954.
32. E. L. Robinson, “Effect of Temperature Variation on the Creep Strength of Steels,” Transactions ASME, Vol. 60, 1938, pp. 253-259.
33. Y. Lieberman, “Relaxation, Tensile Strength and Failure of EI612 and 20Kh1F-L Steels,” Mettaloved, Term. Obrabotka Metal, Vol. 4, 1962, pp.6-13.
34. T. Bui-Quoc, “Engineering Approach for Cumulative Damage in Metals under Creep Loading,” Journal of Engineering Materials and Technology, Transactions of the ASME, Vol. 101, 1979, pp. 337-343.
35. D. G. Pavlou, “Creep Life Prediction under Stepwise Constant Uniaxial Stress and Temperature Conditions,” Engineering Structures, Vol. 23, 2001, pp. 656-662.
36. “Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Material,” ASTM E139-96, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, West Conshohocken, PA, USA, 1998, pp. 255-265.
37. M. E. Loomans and M. E. Fine, “Tin-Silver-Copper Eutectic Temperature and Composition,” Metallurgical and Materials Transactions A, Vol. 31A, 2000, pp.1155-1162.
38. G. E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, USA, 1988.
39. J. Yu, D. K. Joo, and S. W. Shin, “Rupture Time Analyses of the Sn-3.5Ag Alloys Containing Cu or Bi,” Acta Materialia, Vol. 50, 2002, pp. 4315-4324.
40. D. K. Joo, J. Yu, and S. W. Shin, “Creep Rupture of Lead-Free Sn-3.5Ag-Cu Solders,” Journal of Electronic Materials, Vol. 32, 2003, pp. 541-547.
41. V. I. Igoshev, J. I. Kleiman, D. Shangguan, C. Lock, and S. Wong, “Microstructure Changes in Sn-3.5Ag Solder Alloy During Creep,” Journal of Electronic Materials, Vol. 27, 1998, pp. 1367-1371.