| 研究生: |
黃美鳳 Mei-Feng Huang |
|---|---|
| 論文名稱: |
幾丁聚醣接枝半乳糖簇之材料性質及其肝靶向性研究 Meterials characters and liver targer to study of chitosan graft galactose |
| 指導教授: |
徐新興
Shin-Shing Shyu 李亮三 Liang-Sun Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 半乳糖 、幾丁聚醣 |
| 外文關鍵詞: | chitosan, galactose |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗研究,以幾丁聚醣和半乳糖醛酸以共價聯接形成一個接枝半乳糖基的幾丁聚醣薄膜和奈米粒子;另以L-lysine作為中間體,以L-lysine上的胺基和半乳糖醛酸上羧基之凝結回應合成結束簇狀(cluster)接枝半乳糖基之幾丁聚醣薄膜和奈米粒子;分別針對其物化性(拉力、抗菌等等)、Gal-1吸附能力、CLSM(Confocal scanning Microscope)觀察之肝臟細胞標靶測試分析。
薄膜實驗中顯示,當幾丁聚醣接枝半乳糖醛酸後,明顯的可以提升膜材對於E.coil 的抑菌能力,其因半乳糖基為清水基團可增加抗菌能力;接枝半乳糖基之幾丁聚醣薄膜較原始未接枝之幾丁聚醣薄膜明顯具有對Gal-1較佳之結合效能;肝細胞貼附型態模式也都因半乳糖基與肝細胞表面受體ASGP-R之間的半乳糖基特化辨識(galactose-specific recognition)主導了肝細胞在材料表面之貼附型態。
奈米粒子實驗其奈米粒子約300~500nm,且相對的zeta-potential,有接枝lysine之幾丁聚醣奈米粒子或簇狀接枝半乳糖基團之幾丁聚醣奈米粒子均明顯具有較高;而奈米粒子方面,其型態受了三聚磷酸之濃度及pH值之控制;最後以奈米粒子在固定時間點以CLSM(Confocal scanning Microscope)觀察之肝細胞標靶試驗,發現標的試驗之時間越長,螢光越明顯,且觀察到簇狀接枝半乳糖基團之幾丁聚醣奈米粒子都比幾丁聚醣及單點接枝半乳糖基之幾丁聚醣奈米粒子標的至肝細胞的數目明顯為多,作為奈米粒子標的至肝臟細胞之效率評估及佐證。
In this study, the synthesis and characterization of a novel galactosyl chitosan are reported. The novel galactosyl chitosan was prepared by covalent coupling of lactobionic acid with chitosan(gal-chit) ; and galactosyl chitosan was prepared by introducing a L-lysine spacer to chitosan,followed by covalent coupling of lactobionic acid with the lysine spacer on chitosan(gal-lys-chit) ,and witch maked into membranes and nano-particles experiment.
Morphology and mechanical properties of membranes were studied by FTIR analysis, X-ray diffraction, swelling study, antibacterial test, bind galectin-1 and cell train. Nano-particles were studied by FTIR analysis, X-ray diffraction ,nano-particles sizes , zeta potential and target to liver cells.
In the film experiment, improve the ability to resist fungus of the gal-chit and gal-lys-chit membrane materials, because the lactobionic acid is base group of the hydrophile; and the ability to effectively bind galectin-1(Gal-1); galactose and surface receptor of liver cell can lead sticking to the growing type attitude on the material of liver cell.
In the nano-particles experiment, gal-chit,gal-lys,gal-lys-chit of the value are relatively high of the nano-paticles and zeta potential ,because three dimensional obstacle of the galactose of ring structure will influence effort of the electric charge between positive electricity amine base on the chitosan and negative electricity of TPP.The nano-particles form is affected by PH value and concentration of TPP.Nano-particles at some of set time observed to target cells of liver, the longer time is gal-lys-chit NPs has more apparent result than gal-chit NPs. Can be as efficiency assessing and evidence of enduring liver cell that the rice particle marks.
1. S.Bartnicki-Garcia,Ann Microbiol,22,87(1968)
2.S.Hirano and T.Matsumura,N-acyl derivaties of chitosan and their hydrolysis by chtonase,Carbohydr.Res.,165,120-133(1987)
3.G.Brandenberg ,L.G.Leibrock,R.Shuman,W.G.Malette ,and H.J.Bleeding in brain tissue ,Neurosurgery:15,9(1984)
4.R.A.A.Muzzarelli,F.Tanfani and M.Emanuelli,Sulfated N-carboxymethyl chitosan :Novl blood acticoagulants,Carbohydr. Res.,126,225(1984)
5.W.L.Stanley,G.G.Watters,S.H.Kelly and A.C.Olson,Glucoamylase
immobilized on chitin with glutaraledhyde,Biotechnol.Bioeng.,20,
135-140(1978)
6.E.Onsoyen and O.Skaugrud ,Metal recovery using chitosan ,J.Chem.Tech.Biotechnol,49,395-404(1990)
7. R.A.A.Muzzarelli,”chitin and its derivatives:New trends of applied and research,” Carbohydr.Polym.,3,52-57(1993)
8.林佳文、張曉婷、吳柏昇、林睿哲,化工-生醫材料專刊,第48卷第2期,民國90年.
9.S.B.Rao and C. P. Sharma, Journal of Biomedical Materials Research,
34,21,1997
10.X.F.Liu,Y.L.Guan,D.Z.Yang,Z.Li,K.D.Yao,Journal of Applied Polymer Science,79,1324,2001
11.G. Peluso, O.Petille,M. Ranieri,M.Santin,L.Ambrosio,D.Calabro,
B. Avallone and G. Balsamo, Chitosan-mediated stimulation of macrophage function ,Biomaterials,15,1215-1220,1994
12.I.G.Needleman and F.C.S ales,In vitro assessment of bioadhesion for periodontal and buccal drug delievery, Biomaterial,16,617-624,1995
13.M.M.Amiji,Premeability and blood compatibility properties of chitosan-poly(ethylene oxide)blend membrane for haemodialysic,
Biomaterials,16.593-599,1995
14.Janes KevinA.,Marie P.Fresneau,Ana Marazuela,Angels Fabra,Maria Jose Alonso. ,”Chitosan nanoparticles and delivery systems for doxorubicin,”J.Control.Rel.,73,255-267,2001.
15.Roy K.,H.Q.Mao,S.K.Huang and K.W.Leong,”Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy,”Nature Med.5,387-391,1999
16.Xu Y., and Y.Du,”Effect of molecular structure of chitosan : protein delievery properties of chitosan nanoparticles,”Int.J.Pharm.,250,215-226,
2003
17.Zhang Hong ,Oh Megan,Allen Christine, and Kumacheva Eugenia,”Monodisperse chitosan nanoparticles for mucosal drug delivery,”Biomacromlecules.5,2461-2468,2004
18. Barondes, S. H., Cooper, D. N., Gitt, M. A., and Leffler, H. (1994) Galectins. Structure and function of a large family of animal lectins. J. Biol. Chem. 269: 20807-20810.
19. Dunphy, J., Barcham, G., Bischof, R., Young, A., Nash, A., and Meeusen, E. (2002) Isolation and characterization of a novel eosinophil-specific galectin released into the lungs in response to allergen challenge. J. Biol. Chem. 277: 14916-14924.
20. De Waard, A., Hickman, S., and Kornfeld, S. (1976) Isolation and properties of beta-galactoside binding lectins of calf heart and lung. J. Biol. Chem. 251: 7581-7587.
21. Dodd, J., and Jesell, T. M. (1986) Cell surface glycoconjugates and carbohydrate-binding proteins: possible recognition signals in sensory neuron development. J. Exp. Biol. 124: 225-238.
22. Joubert, R., Caron, M., and Bladier, D. (1987) Brain lectin-mediated agglutinability of dissociated cells from embryonic and postnatal mouse brain. Brain Res. 433: 146-150.
23. Hynes, M. A., Buck, L. B., Gitt, M., Barondes, S., Dodd, J., and Jesell, T. M. (1989) Carbohydrate recognition in neuronal development: structure, expression of surface oligosaccharides and beta-galactoside-binding lectins. Clin. Symp. 145: 189-210.
24. Cooper, D. N. W., Massa, S. M., and H., B. S. (1991) Endogenous muscle lectin inhibits myoblast adhesion to laminin. J. Cell Biol. 115: 1437-1448.
25. Moiseeva, E. P., Javed, Q., Spring, E. L., and de Bono, D. P. (2000) Galectin 1 is involved in vascular smooth muscle cell proliferation. Cardiovasc. Res. 45: 493-502.
26. Yamanaka, K., Mishima, K., Nagashima, Y., Asai, A., Sanai, Y., and Kirino, T. (2000) Expression of galectin-1 mRNA correlates with the malignant potential of Human Gliomas and expression of antisense galectin-1 inhibits the growth of 9 Glioma cells. J. Neurosci. Res. 59: 722-730.
27. Cooper, D. N. W., and Barondes, S. H. (1990) Evidence for export of a muscle lectin from cytosol to extracellular matrix and for a novel secretory. J. Cell Biol. 110: 1681-1691.
28. Choi, J. Y., Van Wijnen, A. J., Asiam, F., Leszyk, J. D., Stein, J. L., Stein, G. S., Lian, J. B., and Penman, S. (1998) Developmental association of the beta-galactoside binding protein galectin-1 with the nuclear matrix of rat calvarial osteoblasts. J. Cell Sci. 111: 3035-3043.
29. Barondes, S. H., Cooper, D. N., Gitt, M. A., and Leffler, H. (1994) Galectins. Structure and function of a large family of animal lectins. J. Biol. Chem. 269: 20807-20810.
30. Hughtes, R. C. (1999) Secretion of the galectin family of mammalian carbohydrate-binding protein. Biochim. Biophys. Acta. 1473: 172-185.
31. Perillo, N. L., Pace, K. E., Seihamer, J. J., and Baum, L. G. (1995) Apoptosis of T cells mediated by galectin-1. Nature 78: 736-739.
32. Cindolo, L., Benvenuto, G., Salvatore, P., Pero, R., Salvatore, G., Mirone, V., Prezioso, D., Altieri, V., Bruni, C. B., and Chiariotti, L. (1999) Galectin-1 and galectin-3 expression in human bladder transitional-cell carcinomas. Int. J. Cancer 84: 39-4
33. Couvreur P.B Kante., M.Roland, P.Guit, P.Bauduin, 1979, ”Polycyanoacrylate nonoparticles as potential lysosomotropic carriers :preparation,morphological and sorptive prpperties ,”J.Pharm Pharmacol.,vol.31,pp. 331-332
34. Kriwet B.,E. Walter ,T. Kissel ,1998,”Synthesis of bioadhensive poly(acrylic acid) nano-and microparicles using an incerse emulsion polymerization method for the entrapment of hydrophilic drug candidates,”J.Control.Rel.,vol.56,pp. 149-158
35. StenekesR.J.H.,A.E.Loebis,C.M.Fernandes,D.J.A.Crommilin,W.E.Hennick,2000,”Controlled release of liposomes from biodegradable dextran microspheres:A novel delivery concept.”Pharm.Res.,vol.17,pp. 690-695
36. Brasseur F.,P.Couvreur,B.Kante,L.Deckers-passau,M.Roland,C.Decker and P. Speiser ,1980,”Actinomycin D adsorbed on polymethylcyanoacylate nanoparticles : increased efficiency against an experimental tumor ,”European Journal of Cancer.vol.16,pp.1441-1445
37.Soppimath K.S.,T.M.Aminabbavi ,A.R.Kulkarni,W.E.Rudzinski,2001,
“Biodegradable polymeric nanoparticles as drug delivery devices ,”
J.Control .Rel.,vol.70,pp,1-20
38. Wise D.L.,T.D.Fellman ,J.E.Sanderson and R.L.Wentworth ,1979,
Lactide/glycolide acid polymers in:G.Geregoriadis(Ed.).Drug Carriers in Biology and Medicine.,Academic Press. London.,pp.237-270
39. Jackanicz T.M.,H.A.Nash ,D.L.Wise and J.B.Gergory .1973,”Polylactic
acid as a biodegradable carrier for contraceptive steroids,”
Contraception .vo.8,pp.227-234
40. Anderson M.,De Campos ,Sanchez Alejandro Maria J.Alonso.,2001,
“Chitosannanoparitcles : a new vehicle for the improvement of the delivery of drugs to ocular surface ,”Application to cyclosporine A.Internation journal pharmaceutics.vol.224,99.159-168