跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃錦添
Jin-tian Huang
論文名稱: 矽奈米結構對於質譜離子化效率探討之研究
Effects of silicon nanostructure to mass spectrometry on ionization efficiency
指導教授: 曹嘉文
Chia-wen Tsao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 136
中文關鍵詞: 矽奈米結構質譜離子化效率
外文關鍵詞: silicon nanostructure, Mass spectrometry, SALDI
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來應用質譜儀在蛋白質體的檢測有極大的發展,質譜儀具有快速分析和可提供量化的質荷比等優點。使用矽奈米結構做為承載分析物基材具有高靈敏度、不需使用有機基質和易表面改質等特點,特別適合檢測蛋白質體中之小分子。
    本研究主要討論基材表面形貌、孔洞大小與深度對於質譜離子化效率的影響。透過利用金屬輔助化學蝕刻法,藉由不同的蝕刻參數製備出各種表面結構。此外,為了消除干擾分析之背景雜訊,故在進行質譜分析前,將清除這些低質量背景雜訊。而矽奈米結構經由掃描式電子顯微鏡與原子力顯微鏡觀測不同表面結構。質譜測試則藉由表面增強雷射脫附質譜儀測試並將結構表面與對應之質譜數據相互比較後得到:
    1.基材蝕刻後低質量區會產生背景雜訊干擾,使用紫外光臭氧清潔儀能降低大部份干擾雜訊。
    2.當改變蝕刻時間時,孔洞深度與表面粗糙度會和離子訊號強度成正比。
    3.我們發現蝕刻表面矽氫鍵的含量可能為質譜離子化機制的關鍵。
    4.以矽奈米結構做為質譜承載樣本基材,確實能應用在檢測小分子毒品標準樣本、經酵素消化後的牛血清白蛋白與人類血清。


    In recent years, mass spectrometry has been extensively used as analytical tool in proteomics field. Mass spectrometry can provide rapid analysis and quantify mass to charge ratio. Advantages of using silicon-based nanostructures as substrate material in mass spectrometry analysis include high sensitivity, matrix-free and easy for surface modification. Therefore, silicon-based nanostructure is more suitable in proteomic study for small molecules.
    In this study, we analyze the effects of substrate structure such as surface morphology, pore size and depth to mass spectrometer ionization efficiency. By controlling the metal-assisted chemical etching process parameters, various silicon nanostructures were produced for the mass spectrometry efficiency test. Besides, in order to eliminate the background noise at low m/z value, the cleaning process prior to mass spectrometry analysis was also investigated.
    The resulting surface structures were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Mass spectrometry efficiency was characterized by a SELDI-TOF mass spectrometer. By comparing surface structures with mass spectroscopy efficiency result, we found:
    1.UV/ozone can reduce most background noise rising from substrate etching.
    2.With modification of etching time, the surface roughness and pore depth are positively correlated to ion signal intensity.
    3.The quantity of Si-H bond on substrate plays a key role in the mechanism of ionization.
    4.Silicon-based nanostructure resembles substrate material can be used to detect drug molecules, enzyme-digested bovine serum albumin and small molecules in human serum.

    摘要 I Abstract III 目錄 IV 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1-1 研究背景 1 1-2 研究目的 3 1-3 論文架構 4 第二章 文獻回顧 6 2-1 雷射脫附游離法的發展 6 2-2 電噴灑游離法 6 2-3 基質輔助雷射脫附游離法 8 2-4 表面增強雷射脫附游離法 10 2-5 表面輔助雷射脫附游離法 11 2-5-1多孔鋁 12 2-5-2 氧化鋅奈米線 13 2-5-3 奈米碳管 13 2-5-4 鋁箔紙 14 2-5-5 矽奈米線 14 2-5-6 鍺奈米點 15 2-5-7 矽奈米洞陣列 15 2-5-8 多孔矽 16 2-5-9 層狀奈米結構 17 2-6 結構表面形貌影響 19 2-7 離子化機制 21 第三章 材料與方法 25 3-1 實驗材料與設備 25 3-1-1 實驗設備 25 3-1-2 實驗材料與藥品 26 3-2 藥品配製 28 3-3 實驗方法 30 3-3-1 製備質譜分析矽奈米結構 30 3-3-2 結構分析 31 3-3-3 表面接觸角量測 31 3-3-4 清除低質量<500 Da背景雜訊與提高區域濃度 32 3-3-5 矽奈米結構之質譜效率測試 32 3-3-6 量測矽奈米結構表面粗糙度 34 3-3-7 螢光吸附性量測 34 3-3-8 矽奈米結構離子化測試 34 第四章 結果與討論 36 4-1 清除質量<500 Da雜訊 36 4-1-1 有機溶劑 37 4-1-2 紫外光/臭氧清潔 38 4-2 使用金為輔助蝕刻金屬之質譜效率測試 42 4-2-1 不同輔助蝕刻金屬厚度 42 4-2-2 不同蝕刻時間製備之矽奈米結構 45 4-2-3 不同蝕刻溶液製備矽奈米結構之質譜效率測試 56 4-3 使用銀為輔助蝕刻金屬的質譜效率測試 61 4-3-1 輔助蝕刻金屬銀厚度5nm 61 4-3-2 輔助蝕刻金屬銀厚度10 nm 65 4-4 孔洞深度對離子訊號強度影響 67 4-5 不同結構表面形貌對質譜訊號強度影響 68 4-6 結構粗糙度與離子訊號強度關係 70 4-7 螢光驗證表面吸附分析樣本 74 4-8 矽奈米結構離子化機制測試 76 4-9 矽奈米結構於蛋白質體之應用 79 第五章 結論與未來展望 83 5-1 結論 83 5-2 未來展望 84 參考文獻 86 附錄

    [1]P. G. K. M. A. Posthumus, H. L. C. Meuzelaar,, "Laser Desorption Mass Spectrometry of Polar Nonvolatile Bio-Organic Molecules," Analytical Chemistry, vol. 50, pp. 985-991, 1978.
    [2]M. Yamashita and J. B. Fenn, "Negative-Ion Production with the Electrospray Ion-Source," Journal of Physical Chemistry, vol. 88, pp. 4671-4675, 1984.
    [3]H. W. K. Tanaka , Y. Ido , S. Akita , Y. Yoshida , T. Yoshida , T. Matsuo, "Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry," Mass Spectrometry vol. 2, pp. 153-155, 1988.
    [4]M. Karas and F. Hillenkamp, "Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10000 Daltons," Analytical Chemistry, vol. 60, pp. 2299-2301, 1988.
    [5]J. Wei, J. M. Buriak, and G. Siuzdak, "Desorption-ionization mass spectrometry on porous silicon," Nature, vol. 399, pp. 243-246, 1999.
    [6]J. J. Thomas, Z. X. Shen, R. Blackledge, and G. Siuzdak, "Desorption-ionization on silicon mass spectrometry: an application in forensics," Analytica Chimica Acta, vol. 442, pp. 183-190, 2001.
    [7]K. Huikko, P. Ostman, C. Sauber, F. Mandel, K. Grigoras, S. Franssila, T. Kotiaho, and R. Kostiainen, "Feasibility of atmospheric pressure desorption/ionization on silicon mass spectrometry in analysis of drugs," Rapid Communications in Mass Spectrometry, vol. 17, pp. 1339-1343, 2003.
    [8]K. Pihlainen, K. Grigoras, S. Franssila, R. Ketola, T. Kotiaho, and R. Kostiainen, "Analysis of amphetamines and fentanyls by atmospheric pressure desorption/ionization on silicon mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry and its application to forensic analysis of drug seizures," Journal of Mass Spectrometry, vol. 40, pp. 539-545, 2005.
    [9]C. W. Tsao, P. Kumar, J. K. Liu, and L. Devoe, "Dynamic electrowetting on nanofilament silicon for matrix-free laser desorption/ionization mass spectrometry," Analytical Chemistry, vol. 80, pp. 2973-2981, 2008.
    [10]P. Kebarle, "A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry," Journal of Mass Spectrometry, vol. 35, pp. 804-817, 2000.
    [11]R. B. Cole, "Some tenets pertaining to electrospray ionization mass spectrometry," Journal of Mass Spectrometry, vol. 35, pp. 763-772, 2000.
    [12]http://www.umass.edu/karbon13/images/Link%201%20ESI%20MS.JPG.
    [13]C. W. Tsao, "Interfacing microfluidic bioanalysis with high sensitivity mass spectrometry," Ph.D. Thesis, University of Maryland, 2008.
    [14]http://www.chm.bris.ac.uk/ms/theory/maldi-ionisation.html.
    [15]T. W. Hutchens and T. T. Yip, "New Desorption Strategies for the Mass-Spectrometric Analysis of Macromolecules," Rapid Communications in Mass Spectrometry, vol. 7, pp. 576-580, 1993.
    [16]H. J. Issaq, T. D. Veenstra, T. P. Conrads, and D. Felschow, "The SELDI-TOF MS approach to proteomics: Protein profiling and biomarker identification," Biochemical and Biophysical Research Communications, vol. 292, pp. 587-592, 2002.
    [17]M. Merchant and S. R. Weinberger, "Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry," Electrophoresis, vol. 21, pp. 1164-1177, 2000.
    [18]J. Sunner, E. Dratz, and Y. C. Chen, "Graphite Surface Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry of Peptides and Proteins from Liquid Solutions," Analytical Chemistry, vol. 67, pp. 4335-4342, 1995.
    [19]C. S. Pan, S. Y. Xu, L. G. Hu, X. Y. Su, J. J. Ou, H. F. Zou, Z. Guo, Y. Zhang, and B. C. Guo, "Using oxidized carbon nanotubes as matrix for analysis of small molecules by MALDI-TOF MS," Journal of the American Society for Mass Spectrometry, vol. 16, pp. 883-892, 2005.
    [20]S. Okuno, R. Arakawa, K. Okamoto, Y. Matsui, S. Seki, T. Kozawa, S. Tagawa, and Y. Wada, "Requirements for laser-induced desorption/ionization on submicrometer structures," Analytical Chemistry, vol. 77, pp. 5364-5369, 2005.
    [21]R. Nayak and D. R. Knapp, "Effects of thin-film structural parameters on laser desorption/ionization from porous alumina," Analytical Chemistry, vol. 79, pp. 4950-4956, 2007.
    [22]M. J. Kang, J. C. Pyun, J. C. Lee, Y. J. Choi, J. H. Park, J. G. Park, J. G. Lee, and H. J. Choi, "Nanowire-assisted laser desorption and ionization mass spectrometry for quantitative analysis of small molecules," Rapid Communications in Mass Spectrometry, vol. 19, pp. 3166-3170, 2005.
    [23]J. H. S. Won Jik Shin, Jae Yong Song, Sang Yun Hana, "Effects of ZnO Nanowire Length on Surface-Assisted Laser Desorption/Ionization of Small Molecules," J Am Soc Mass Spectrom, vol. 21, pp. 989–992, 2010.
    [24]S. Iijima, "Helical Microtubules of Graphitic Carbon," Nature, vol. 354, pp. 56-58, 1991.
    [25]S. Y. Xu, Y. F. Li, H. F. Zou, J. S. Qiu, Z. Guo, and B. C. Guo, "Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry," Analytical Chemistry, vol. 75, pp. 6191-6195, 2003.
    [26]S. F. Ren, L. Zhang, Z. H. Cheng, and Y. L. Guo, "Immobilized carbon nanotubes as matrix for MALDI-TOF-MS analysis: Applications to neutral small carbohydrates," Journal of the American Society for Mass Spectrometry, vol. 16, pp. 333-339, 2005.
    [27]N. F. Hsu, S. Y. Tseng, C. Y. Wu, C. T. Ren, Y. C. Lee, C. H. Wong, and C. H. Chen, "Desorption ionization of biomolecules on metals," Analytical Chemistry, vol. 80, pp. 5203-5210, 2008.
    [28]E. P. Go, J. V. Apon, G. H. Luo, A. Saghatelian, R. H. Daniels, V. Sahi, R. Dubrow, B. F. Cravatt, A. Vertes, and G. Siuzdak, "Desorption/ionization on silicon nanowires," Analytical Chemistry, vol. 77, pp. 1641-1646, 2005.
    [29]J. D. Cuiffi, D. J. Hayes, S. J. Fonash, K. N. Brown, and A. D. Jones, "Desorption-ionization mass spectrometry using deposited nanostructured silicon films," Analytical Chemistry, vol. 73, pp. 1292-1295, 2001.
    [30]T. Seino, H. Sato, A. Yamamoto, A. Nemoto, M. Torimura, and H. Tao, "Matrix-free laser desorption/ionization-mass spectrometry using self-assembled germanium nanodots," Analytical Chemistry, vol. 79, pp. 4827-4832, 2007.
    [31]H. Sato, A. Nemoto, A. Yamamoto, and H. Tao, "Surface cleaning of germanium nanodot ionization substrate for surface-assisted laser desorption/ionization mass spectrometry," Rapid Communications in Mass Spectrometry, vol. 23, pp. 603-610, 2009.
    [32]N. H. Finkel, B. G. Prevo, O. D. Velev, and L. He, "Ordered silicon nanocavity arrays in surface-assisted desorption/ionization mass spectrometry," Analytical Chemistry, vol. 77, pp. 1088-1095, 2005.
    [33]S. A. Trauger, E. P. Go, Z. X. Shen, J. V. Apon, B. J. Compton, E. S. P. Bouvier, M. G. Finn, and G. Siuzdak, "High sensitivity and analyte capture with desorption/ionization mass spectrometry on silylated porous silicon," Analytical Chemistry, vol. 76, pp. 4484-4489, 2004.
    [34]M. E. Davis, "Ordered porous materials for emerging applications," Nature, vol. 417, pp. 813-821, 2002.
    [35]M. J. Sailor, "Color me sensitive: Amplification and discrimination in photonic silicon nanostructures," Acs Nano, vol. 1, pp. 248-252, 2007.
    [36]E. J. Anglin, L. Y. Cheng, W. R. Freeman, and M. J. Sailor, "Porous silicon in drug delivery devices and materials," Advanced Drug Delivery Reviews, vol. 60, pp. 1266-1277, 2008.
    [37]S. P. Low, K. A. Williams, L. T. Canham, and N. H. Voelcker, "Generation of reactive oxygen species from porous silicon microparticles in cell culture medium," Journal of Biomedical Materials Research Part A, vol. 93A, pp. 1124-1131, 2010.
    [38]W. G. Lewis, Z. X. Shen, M. G. Finn, and G. Siuzdak, "Desorption/ionization on silicon (DIOS) mass spectrometry: background and applications," International Journal of Mass Spectrometry, vol. 226, pp. 107-116, 2003.
    [39]R. A. Kruse, X. L. Li, P. W. Bohn, and J. V. Sweedler, "Experimental factors controlling analyte ion generation in laser desorption/ionization mass spectrometry on porous silicon," Analytical Chemistry, vol. 73, pp. 3639-3645, 2001.
    [40]Z. X. Shen, J. J. Thomas, C. Averbuj, K. M. Broo, M. Engelhard, J. E. Crowell, M. G. Finn, and G. Siuzdak, "Porous silicon as a versatile platform for laser desorption/ionization mass spectrometry," Analytical Chemistry, vol. 73, pp. 612-619, 2001.
    [41]S. Alimpiev, S. Nikiforov, V. Karavanskii, T. Minton, and J. Sunner, "On the mechanism of laser-induced desorption-ionization of organic compounds from etched silicon and carbon surfaces," Journal of Chemical Physics, vol. 115, pp. 1891-1901, 2001.
    [42]S. Alimpiev, A. Grechnikov, J. Sunner, V. Karavanskii, Y. Simanovsky, S. Zhabin, and S. Nikiforov, "On the role of defects and surface chemistry for surface-assisted laser desorption ionization from silicon," Journal of Chemical Physics, vol. 128, pp. -, 2008.
    [43]V. Jokinen, S. Aura, L. Luosujarvi, L. Sainiemi, T. Kotiaho, S. Franssila, and M. Baumann, "Surface Assisted Laser Desorption/Ionization on Two-Layered Amorphous Silicon Coated Hybrid Nanostructures," Journal of the American Society for Mass Spectrometry, vol. 20, pp. 1723-1730, 2009.
    [44]Y. F. Chen, H. Y. Chen, A. Aleksandrov, and T. M. Orlando, "Roles of water, acidity, and surface morphology in surface-assisted laser desorption/ionization of amino acids," Journal of Physical Chemistry C, vol. 112, pp. 6953-6960, 2008.
    [45]X. J. Wen, S. Dagan, and V. H. Wysocki, "Small-molecule analysis with silicon-nanoparticle-assisted laser desorption/ionization mass spectrometry," Analytical Chemistry, vol. 79, pp. 434-444, 2007.
    [46]M. Schurenberg, K. Dreisewerd, and F. Hillenkamp, "Laser desorption/ionization mass spectrometry of peptides and proteins with particle suspension matrixes," Analytical Chemistry, vol. 71, pp. 221-229, 1999.
    [47]Q. Shen and T. Toyoda, "Dependence of thermal conductivity of porous silicon on porosity characterized by photoacoustic technique," Review of Scientific Instruments, vol. 74, pp. 601-603, 2003.
    [48]G. H. Luo, Y. Chen, G. Siuzdak, and A. Vertes, "Surface modification and laser pulse length effects on internal energy transfer in DIOS," Journal of Physical Chemistry B, vol. 109, pp. 24450-24456, 2005.
    [49]G. Piret, H. Drobecq, Y. Coffinier, O. Melnyk, and R. Boukherroub, "Matrix-Free Laser Desorption/Ionization Mass Spectrometry on Silicon Nanowire Arrays Prepared by Chemical Etching of Crystalline Silicon," Langmuir, vol. 26, pp. 1354-1361, 2010.
    [50]Y. S. Xiao, S. T. Retterer, D. K. Thomas, J. Y. Tao, and L. He, "Impacts of Surface Morphology on Ion Desorption and Ionization in Desorption Ionization on Porous Silicon (DIOS) Mass Spectrometry," Journal of Physical Chemistry C, vol. 113, pp. 3076-3083, 2009.

    QR CODE
    :::