| 研究生: |
范子軒 Zih-Syuan Fan |
|---|---|
| 論文名稱: |
港灣構造之遮蔽效應於水位到時之影響性分析 Impact Analysis of Harbor Structure’s Sheltering Effect on Time Difference of Water Level |
| 指導教授: |
吳祚任
Tso-Ren Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 水文與海洋科學研究所 Graduate Instittue of Hydrological and Oceanic Sciences |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 392 |
| 中文關鍵詞: | COMCOT-SS 、港灣構造 、遮蔽效應 、水位模擬 、時間差 、港內外差異 |
| 外文關鍵詞: | COMCOT-SS, Harbor Structures, Sheltering Effect, Water Level Simulation, Time Lag, Differences of Inside and Outside Harbor |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
先前之研究指出,過去在檢視模式之風暴潮水位時,可能出現與觀測資料比對後,總水位扣除觀測值之殘差失準問題,其可能因素包含極端事件之影響、特定區域之地形特殊性、潮位站坐落於港口內部而非外海等,因此有必要單獨檢視純風暴潮水位與天文潮汐水位之影響。然而,在單獨檢視潮汐水位時,依然會出現水位數值之擺盪情形,顯示有非風暴潮之因素影響了水位之準確辨識。
為瞭解水位殘差之來源,本研究透過COMCOT-SS數值模式(Cornell Multi- grid Coupled of Tsunami Model - Storm Surge),並搭配TPXO8-atlas之天文潮模式作為邊界條件,藉由求解非線性之淺水波方程式,模擬多個現有潮位站在特定純潮汐期間之水位結果,並進行統計參數之收斂性分析,並發現潮汐水位之到時對總水位殘差影響之可能性。
在探討港灣構造對水位於時間上之影響,其中涉及多種變量,包含曼寧係數、水位之波高、潮位計相距距離、水深等,為建立參數之間之關聯性,本研究透過簡化港口地貌特徵與進行波速之無因次參數I_z之無因次化分析(I_z值之計算方式為:I_z=C_s/C_p,C_s為模擬波速,是藉由模式結果中,兩不同位置潮位計之距離與入射波到時所計算出;C_p為預估波速,由波速計算式:C_p=√gH(其中, g為重力加速度,H為水深)所計算出),紀錄模擬設置下港灣構造對於港口內外之水位時間差異性,觀察港灣構造之遮蔽效應對於水位模擬之波速之潛在影響,並於後續進行實際港口案例之水位分析,以分析不同變量對水位到時之影響程度。
研究結果指出,上述三個不同變量(波高h、曼寧係數n、港內水道之水深H)所計算出之無因次參數x_1 、x_2 、x_3所改寫之無因次參數皆有可能成為水位出現時間誤差之因素,並且曼寧係數n所計算出之無因次參數x_2與波速無因次參數I_z為負相關,而波高h所計算出之無因次參數x_1則與波速無因次參數I_z為正相關。最終,透過統計所有資料點進行線性回歸分析後,整理出經驗公式,並與實際港口之模擬案例比對後,確認該經驗公式確實可用於評估港內外潮位計之波速與時間差異。
未來之後續探討可參考此研究之巢狀網格、數值潮位計選擇、簡化地形之設置等,透過分析變量之於波速之無因次參數I_z之關係,得知各種變量對於水位之時差影響,以期於未來能更準確地分析水位,以及將經驗公式之設計方法應用於多個領域當中,包含河口地區與河川之相關評估,或潮汐發電之波速、潮汐到時評估等。
Previous studies have pointed out that discrepancies may arise between the total water level and the observed data after accounting for residuals when examining storm surge water levels in model simulations. Possible factors contributing to these discrepancies include the impact of extreme events, unique topographical features of specific areas, and the positioning of tide gauges inside harbors rather than in open waters. Therefore, it is necessary to examine the effects of pure storm surge water and astronomical tidal levels separately. However, even when examining tidal water levels alone, fluctuations in water level values can still occur, indicating that factors other than storm surges may affect the accurate identification of water levels.
To understand the water level residuals, this study employed the COMCOT-SS numerical model (Cornell Multi-grid Coupled of Tsunami Model—Storm Surge) along with the TPXO8-atlas astronomical tide model as boundary conditions. By solving nonlinear shallow water equations, the study simulated water level results at several existing tide gauge stations during specific pure tidal periods and conducted convergence analysis of statistical parameters, revealing the potential impact of tidal arrival times on total water level residuals.
Various variables were considered in exploring the temporal effects of harbor structures on water levels, including Manning's coefficient, wave height, the distance between tide gauges, and water depth. To establish relationships between these parameters, this study conducted a dimensionless analysis of wave speed using the simplified characteristics of harbor topography. The dimensionless parameter I_z (calculated as I_z=C_s/C_p, where C_s is the simulated wave speed obtained from the distance between two different tide gauges and the arrival time of the incoming wave; C_p is the predicted wave speed calculated using the formula C_p=√gH, where g is the gravitational acceleration, H is the water depth) was used to record the effects of harbor structures on the time differences in water levels inside and outside the harbor, observing the potential impact of harbor structure shielding on wave speed simulations. Subsequent water level analyses were conducted for actual harbor cases to assess the influence of different variables on the timing of water levels.
The study found that the dimensionless parameters x_1, x_2 and x_3, derived from three different variables (wave height h, Manning's coefficient n, and water depth H), could potentially contribute to timing errors in water levels. It was also noted that the dimensionless parameter x_2, calculated from Manning's coefficient n, was negatively correlated with the dimensionless wave speed parameter I_z. In contrast, the dimensionless parameter x_1, calculated from wave height h, was positively correlated. Ultimately, an empirical formula was derived through linear regression analysis of all data points, which, when compared with actual harbor simulation cases, confirmed its applicability in assessing the differences in wave speeds and timing between tide gauges inside and outside harbors.
Future research can reference this study's use of nested grids, selection of numerical tide gauges, and simplified terrain settings. Analyzing the relationship between variables and the dimensionless parameter I_z of wave speed can achieve more accurate water level analyses. Furthermore, the method of designing empirical formulas developed in this study could be applied to various fields, including estuarine and river assessments or evaluations of wave speed and tidal arrival time for tidal energy generation.
Bernier, N. B., & Thompson, K. R. (2007). Tide-surge interaction off the east coast of Canada and northeastern United States. Journal of Geophysical Research: Oceans, 112(C6). https://doi.org/https://doi.org/10.1029/2006JC003793
〔2〕 Blumberg, A. F., & Mellor, G. L. (1987). A description of a three‐dimensional coastal ocean circulation model. Three‐dimensional coastal ocean models, 4, 1-16.
〔3〕 Booij, N., Ris, R. C., & Holthuijsen, L. H. (1999). A third‐generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4), 7649-7666.
〔4〕 Chang, C.-H., Shih, H.-J., Chen, W.-B., Su, W.-R., Lin, L.-Y., Yu, Y.-C., & Jang, J.-H. (2018). Hazard assessment of typhoon-driven storm waves in the nearshore waters of Taiwan. Water, 10(7), 926.
〔5〕 Chant, R. J., Sommerfield, C. K., & Talke, S. A. (2018). Impact of channel deepening on tidal and gravitational circulation in a highly engineered estuarine basin. Estuaries and Coasts, 41, 1587-1600.
〔6〕 Chaumillon, E., Bertin, X., Fortunato, A. B., Bajo, M., Schneider, J.-L., Dezileau, L., Walsh, J. P., Michelot, A., Chauveau, E., & Créach, A. (2017). Storm-induced marine flooding: Lessons from a multidisciplinary approach. Earth-Science Reviews, 165, 151-184.
〔7〕 Chen, W.-B., Lin, L.-Y., Jang, J.-H., & Chang, C.-H. (2017). Simulation of typhoon-induced storm tides and wind waves for the northeastern coast of Taiwan using a tide–surge–wave coupled model. Water, 9(7), 549.
〔8〕 Chen, W.-B., Liu, W.-C., & Wu, C.-Y. (2013). Coupling of a one-dimensional river routing model and a three-dimensional ocean model to predict overbank flows in a complex river–ocean system. Applied Mathematical Modelling, 37(9), 6163-6176.
〔9〕 Cheng, Y., & Andersen, O. B. (2011). Multimission empirical ocean tide modeling for shallow waters and polar seas. Journal of Geophysical Research: Oceans, 116(C11).
〔10〕 Chiou, M.-D., Chien, H., Centurioni, L. R., & Kao, C.-C. (2010). On the Simulation of Shallow Water Tides in the Vicinity of the Taiwan Banks. Terrestrial, Atmospheric & Oceanic Sciences, 21(1).
〔11〕 Chunpeng, W., & Tao, L. (2015). Numerical study on the effect of breakwater construction on tidal flow and sediment. 2015 Sixth International Conference on Intelligent Systems Design and Engineering Applications (ISDEA),
〔12〕 Codiga, D. L. (2011). Unified tidal analysis and prediction using the UTide Matlab functions.
〔13〕 Dean, R. G., & Dalrymple, R. A. (2004). Coastal processes with engineering applications. Cambridge University Press.
〔14〕 DHI. (1994). User guide and reference manual of MIKE 21-coastal hydraulics and oceanography hydrodynamic module. Danish Hydraulic Institute.
〔15〕 DHI. (2014). MIKE 21 Flow Model FM Hydrodynamic Module, User Manual. Hydrodynamic Module Scientific Documentation.
〔16〕 Doodson, A. T. (1921). The harmonic development of the tide-generating potential. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 100(704), 305-329.
〔17〕 Dushaw, B. D., Egbert, G. D., Worcester, P. F., Cornuelle, B. D., Howe, B. M., & Metzger, K. (1997). A TOPEX/POSEIDON global tidal model (TPXO. 2) and barotropic tidal currents determined from long-range acoustic transmissions. Progress in Oceanography, 40(1-4), 337-367.
〔18〕 Egbert, G. D., Bennett, A. F., & Foreman, M. G. (1994). TOPEX/POSEIDON tides estimated using a global inverse model. Journal of Geophysical Research: Oceans, 99(C12), 24821-24852.
〔19〕 Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic technology, 19(2), 183-204.
〔20〕 Einšpigel, D., & Martinec, Z. (2017). Time-domain modeling of global ocean tides generated by the full lunisolar potential. Ocean Dynamics, 67(2), 165-189.
〔21〕 Familkhalili, R., & Talke, S. A. (2016). The effect of channel deepening on tides and storm surge: A case study of Wilmington, NC. Geophysical Research Letters, 43(17), 9138-9147.
〔22〕 Goto, C., Ogawa, Y., Shuto, N., & Imamura, F. (1997). Numerical method of tsunami simulation with the leap-frog scheme. IOC Manuals and Guides, 35, 130.
〔23〕 Haigh, I. D., Pickering, M. D., Green, J. M., Arbic, B. K., Arns, A., Dangendorf, S., Hill, D. F., Horsburgh, K., Howard, T., & Idier, D. (2020). The tides they are a‐Changin': A comprehensive review of past and future nonastronomical changes in tides, their driving mechanisms, and future implications. Reviews of Geophysics, 58(1), e2018RG000636.
〔24〕 Haigh, I. D., Wadey, M. P., Wahl, T., Ozsoy, O., Nicholls, R. J., Brown, J. M., Horsburgh, K., & Gouldby, B. (2016). Spatial and temporal analysis of extreme sea level and storm surge events around the coastline of the UK. Scientific data, 3(1), 1-14.
〔25〕 Hill, D., Griffiths, S., Peltier, W., Horton, B., & Törnqvist, T. (2011). High‐resolution numerical modeling of tides in the western Atlantic, Gulf of Mexico, and Caribbean Sea during the Holocene. Journal of Geophysical Research: Oceans, 116(C10).
〔26〕 Holleman, R. C., & Stacey, M. T. (2014). Coupling of sea level rise, tidal amplification, and inundation. Journal of physical oceanography, 44(5), 1439-1455.
〔27〕 Horsburgh, K., & Wilson, C. (2007). Tide‐surge interaction and its role in the distribution of surge residuals in the North Sea. Journal of Geophysical Research: Oceans, 112(C8).
〔28〕 Hsiao, L.-F., Chen, D.-S., Kuo, Y.-H., Guo, Y.-R., Yeh, T.-C., Hong, J.-S., Fong, C.-T., & Lee, C.-S. (2012). Application of WRF 3DVAR to operational typhoon prediction in Taiwan: Impact of outer loop and partial cycling approaches. Weather and Forecasting, 27(5), 1249-1263.
〔29〕 Hsieh, T.-C., Ding, Y., Yeh, K.-C., & Jhong, R.-K. (2020). Investigation of morphological changes in the tamsui river estuary using an integrated coastal and estuarine processes model. Water, 12(4), 1084.
〔30〕 Idier, D., Dumas, F., & Muller, H. (2012). Tide-surge interaction in the English Channel. Natural Hazards and Earth System Sciences, 12(12), 3709-3718.
〔31〕 Jay, D. A., Leffler, K., & Degens, S. (2011). Long-Term Evolution of Columbia River Tides. Journal of Waterway, Port, Coastal, and Ocean Engineering, 137(4), 182-191. https://doi.org/doi:10.1061/(ASCE)WW.1943-5460.0000082
〔32〕 Jelesnianski, C. P. (1965). A numerical calculation of storm tides induced by a tropical storm impinging on a continental shelf. Monthly Weather Review, 93(6), 343-358.
〔33〕 Kamphuis, J. W. (2000). Introduction to Coastal Engineering and Management. In: World Scientific.
〔34〕 Korotenko, K., Osadchiev, A., Zavialov, P., Kao, R.-C., & Ding, C.-F. (2014). Effects of bottom topography on dynamics of river discharges in tidal regions: case study of twin plumes in Taiwan Strait. Ocean Science, 10(5), 863-879.
〔35〕 Korotenko, K. A., Zavialov, P. O., Chen, Y.-Y., & Lee, H. H. (2020). A study of circulation, turbulence, and tidal stream resources in the Taiwan Strait. Frontiers in Marine Science, 7, 368.
〔36〕 Lazure, P., & Dumas, F. (2008). An external–internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Advances in water resources, 31(2), 233-250.
〔37〕 Luettich, R. A., Westerink, J. J., & Scheffner, N. W. (1992). ADCIRC: an advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1, Theory and methodology of ADCIRC-2DD1 and ADCIRC-3DL.
〔38〕 Luyten, P. J., Jones, J. E., Proctor, R., Tabor, A., Tett, P., & Wild-Allen, K. (1999). COHERENS–A coupled hydrodynamical-ecological model for regional and shelf seas: user documentation. MUMM Report, Management Unit of the Mathematical Models of the North Sea, 914.
〔39〕 Lyard, F., Lefevre, F., Letellier, T., & Francis, O. (2006). Modelling the global ocean tides: modern insights from FES2004. Ocean Dynamics, 56, 394-415.
〔40〕 Matsumoto, D., LeRoux, J., Wilson-Cohn, C., Raroque, J., Kooken, K., Ekman, P., Yrizarry, N., Loewinger, S., Uchida, H., & Yee, A. (2000). A new test to measure emotion recognition ability: Matsumoto and Ekman's Japanese and Caucasian Brief Affect Recognition Test (JACBART). Journal of Nonverbal behavior, 24, 179-209.
〔41〕 Mellor, G. L. (1998). Users guide for a three dimensional, primitive equation, numerical ocean model. Program in Atmospheric and Oceanic Sciences, Princeton University Princeton, NJ.
〔42〕 Pawlowicz, R., Beardsley, B., & Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8), 929-937.
〔43〕 Pugh, D. T. (1987). Tides, surges and mean sea level. John Wiley and Sons Inc.,New York, NY. https://www.osti.gov/biblio/5061261
〔44〕 Ray, R. D. (1999). A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99. 2. National Aeronautics and Space Administration, Goddard Space Flight Center.
〔45〕 Rodríguez-Padilla, I., & Ortiz, M. (2017). On the secular changes in the tidal constituents in San Francisco Bay. Journal of Geophysical Research: Oceans, 122(9), 7395-7406. https://doi.org/https://doi.org/10.1002/2016JC011770
〔46〕 Savcenko, R., & Bosch, W. (2012). EOT11a-empirical ocean tide model from multi-mission satellite altimetry. DGFI Report No. 89.
〔47〕 Schindelegger, M., Green, J., Wilmes, S. B., & Haigh, I. D. (2018). Can we model the effect of observed sea level rise on tides? Journal of Geophysical Research: Oceans, 123(7), 4593-4609.
〔48〕 Schrama, E., & Ray, R. (1994). A preliminary tidal analysis of TOPEX/POSEIDON altimetry. Journal of Geophysical Research: Oceans, 99(C12), 24799-24808.
〔49〕 Sheng, Y. P., Paramygin, V. A., Terng, C.-T., & Chi-Hao, C. (2016). Simulating storm surge and inundation along the Taiwan coast during typhoons Fanapi in 2010 and Soulik in 2013. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 27(6), 9.
〔50〕 Stammer, D., Ray, R., Andersen, O. B., Arbic, B., Bosch, W., Carrère, L., Cheng, Y., Chinn, D., Dushaw, B., & Egbert, G. (2014). Accuracy assessment of global barotropic ocean tide models. Reviews of Geophysics, 52(3), 243-282.
〔51〕 Tu, Z., Gao, X., Xu, J., Sun, W., Sun, Y., & Su, D. (2021). A novel method for regional short-term forecasting of water level. Water, 13(6), 820.
〔52〕 Vellinga, N., Hoitink, A., van der Vegt, M., Zhang, W., & Hoekstra, P. (2014). Human impacts on tides overwhelm the effect of sea level rise on extreme water levels in the Rhine–Meuse delta. Coastal engineering, 90, 40-50.
〔53〕 Woodruff, J. D., Irish, J. L., & Camargo, S. J. (2013). Coastal flooding by tropical cyclones and sea-level rise. Nature, 504(7478), 44-52.
〔54〕 Wu, D., Fang, G., Cui, X., & Teng, F. (2018). An analytical study of M 2 tidal waves in the Taiwan Strait using an extended Taylor method. Ocean Science, 14(1), 117-126.
〔55〕 Wu, T.-R., Tsai, Y.-L., & Terng, C.-T. (2017). The recent development of storm surge modeling in Taiwan. Procedia IUTAM, 25, 70-73.
〔56〕 Yu, Y.-C., Chen, H., Shih, H.-J., Chang, C.-H., Hsiao, S.-C., Chen, W.-B., Chen, Y.-M., Su, W.-R., & Lin, L.-Y. (2019). Assessing the potential highest storm tide hazard in Taiwan based on 40-year historical typhoon surge hindcasting. Atmosphere, 10(6), 346.
〔57〕 Zhang, W.-Z., Hong, H.-S., Shang, S.-P., Chen, D.-W., & Chai, F. (2007). A two-way nested coupled tide-surge model for the Taiwan Strait. Continental Shelf Research, 27(10-11), 1548-1567.
〔58〕 Zhang, W. Z., Shi, F., Hong, H. S., Shang, S. P., & Kirby, J. T. (2010). Tide‐surge interaction intensified by the Taiwan Strait. Journal of Geophysical Research: Oceans, 115(C6).
〔59〕 Zhong, L., & Li, M. (2006). Tidal energy fluxes and dissipation in the Chesapeake Bay. Continental Shelf Research, 26(6), 752-770.
〔60〕 Zu, T., Gan, J., & Erofeeva, S. Y. (2008). Numerical study of the tide and tidal dynamics in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 55(2), 137-154.
〔61〕 吳祚任, 林君蔚, 莊淑君, 楊天瑋, 許家均, & 曾博森. (2021). 臺灣暴潮預報溢淹模式精準度量化研究(1/3).
〔62〕 李兆芳, 劉正琪, 邱永芳, 蘇青和, 陳明宗, 李俊穎, 高政宏, & 林莉凰. (2011). 近岸海象數值模擬及預警系統之建立(4/4)-水動力部份.
〔63〕 李汴軍, 范揚洺, 董東璟, & 高家俊. (2005). 台灣海域潮汐空間均勻特性之研究. 海洋工程學刊, 67-83.
〔64〕 林演斌, 陳聖學, 施孟憲, 滕春慈, & 林燕璋. (2020). 港內外潮位差異分析. 109年天氣分析與預報研討會, A5-O-N07.
〔65〕 林演斌, 陳聖學, 滕春慈, & 林燕璋. (2019). 港內外潮位差異分析. 108年天氣分析與預報研討會, A7-14.
〔66〕 林豐福, 洪憲忠, 廖建明, 林達遠, & 許泰文. (2004). 臺北港海域運輸安全之探討(II)—臺北港海域潮流流場數值模擬分析.
〔67〕 張憲國, 莊文傑, & 曾相茂. (2013). 臺灣商港的主要天文潮汐與潮流的特性比較. 海洋工程學刊, 13(4), 393-410.
〔68〕 莊文傑, & 江中權. (2002). 台灣四周海域海流數值模擬研究(二)-高雄港海域潮汐與潮流之數值模擬研究.
〔69〕 詹森. (2006). 東亞海域之潮汐:1/12°三維斜壓潮汐模式之數值模擬. 天氣分析與預報研討會論文彙編, 7-27〜27-32.
〔70〕 蕭力榮. (2017). 臺灣本島與離島潮位分析及深度基準探討. 交通大學土木工程系所學位論文, 2017, 1-83.