跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳明宏
Ming-Hong Chen
論文名稱: 地下岩層非均向性對震波特性關係之物理模型研究
The Effects of Anisotropy on the Wave Character-Physical Model Study
指導教授: 謝昭輝
C.-H. Hsieh
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球物理研究所
Graduate Institue of Geophysics
畢業學年度: 88
語文別: 中文
論文頁數: 92
中文關鍵詞: 非均向性物理模型超音波裂隙震波速度震波傳遞孔隙率流體
外文關鍵詞: anisotropy, physical model, ultrasonic, cracks, seismic velocity, seismic propagation, porosity, fluid
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地下地層常因受到大地應力系統作用及岩石結晶演化特性之差異而導致破裂帶產生,此地層之破裂現象常造成地層岩性非均向之物理特性,使得震波在傳播時造成震波走時差異與振幅的異常。本研究利用可控制實驗參數之三維物理模型,以超音波穿透技術量測震波受地層非均向性因素影響造成之速度變化做系列分析、研究,並由已知岩層內部構造下所量測得之震波特性資料,進而比對應用於實際野外量測工作。
    本實驗結果顯示,無論非均向介質於乾燥或飽和流體之情況下,震波波速均會隨測線與具方向性排列裂隙之夾角改變而有顯著的變化。根據此震波特性,應用於野外震波探測時,設計往不同方向施展測線,藉由測線與具方向性排列裂隙之夾角改變而造成S波波速產生變化之特性,可迅速確切地推斷出裂隙排列之大致走向與分布情形。


    Effects on wave propagation caused by the influence of cracks in the substrata resulted from the stress system and/or crystalline characteristics are an important topic for oil exploration. Depending upon the crack or fracture pattern in rocks, it results in an velocity anisotropy, wave trapping and splitting. This study aimed at the analysis of effects of cracks on the wave characters such as velocity changing related to the intersection angle between seismic profile and rock’s crack alignment. The effects of porosity, formation fluids and density and geometry distribution of cracks on wave propagation have been also investigated. Based on the results, it implies that the velocity measurement on the seismic events by surface seismic profile is a probable approach to estimate the anisotropy in substratum.

    目 錄 頁數 論文提要i 致謝ii 目錄iii 圖目v 表目viii 第一章 緒論1 1.1 研究動機與目的1 1.2 文獻回顧2 1.3 研究方法3 第二章 實驗設備4 2.1 儀器系統4 2.2 實驗記錄流程7 2.3 震源8 第三章 模型製作11 3.1 模型材料11 3.2 選用材料之考量因素11 3.3 模型設計14 3.4 模型製作步驟14 3.5 模型量測24 3.6 模型雜訊干擾之處理24 第四章 實驗結果分析與討論28 4.1 模型Matrix 128 4.2. 模型Matrix 251 4.3 模型Matrix 351 4.4 模型Matrix 453 第五章 實驗結果分析之應用58 第六章 結論67 參考文獻68 英文摘要70 附錄71

    Bamford, D., and Crampin, S., 1977. Seismic anisotropy - the state of the art. Geophys. J. R. Astr. Soc., 49, 1-8.
    Biot, M. A., 1956a. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range. J. Acoust. Soc. Am., 28, 168-178.
    Biot, M. A., 1956b. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. High-Frequency Range. J. Acoust. Soc. Am., 28, 179-191.
    Bullen, K. E., and Bolt, B. A., 1985, An introduction to the theory of seismology, Cambridge, London, New York, New Rochelle, Melbourne Sydney. 499.
    Crampin, S., 1978. Seismic wave propagation through a cracked solid: polarization as a possible dilatancy diagnostic. Geophys. J. R. Astr. Soc., 53, 467-496.
    Crampin, S., 1981. A review of wave motion in anisotropic and cracked elastic-media , Wave Motion, 3, 343-391.
    Crampin, S., 1984a. An introduction to wave propagation in anisotropic media. Geophys. J. R. Astr. Soc., 76, 17-28.
    Crampin, S., 1984b. Effective anisotropic elastic constants for wave propagation through cracked solids. Geophys. J. R. Astr. Soc., 76, 135-145.
    Crampin, S., Chesnokov, E. M., Hipkin, F. R., 1984. Seismic anisotropy - the state of the art: II. Geophys. J. R. Astr. Soc., 76, 1-16.
    Klimentos, T., 1995. Attenuation of P-and S-wave as a method of distinguishing gas and condensate from oil and water. Geophysics, 60, 447-458.
    Lou, M. and Rial, J.A., 1995. Modeling elastic-wave propagation in inhomogeneous anisotropic media by the pseudo-special method. Geophys. J. Int., 120, 60-72.
    Wyllie, M. R. J., Gregory, A. R., and Garder, L. W., 1956, Elastic wave velocities in heterogeneous and porous media,
    Geophysics, XXI, No. 1, 41-70.
    謝昭輝, 1986. 物理震測模型研究, 國立中央大學地球物理研究所.
    張永孚, 1995. 散射衰減與尾波特性之二維物理模型研究, 博士論文, 國
    立中央大學地球物理研究所.
    施行覺, 徐果明, 靳平, 盧振鋼, 劉文忠, 1995. 岩石的含水飽和度對縱、橫波速及衰減影響的實驗研究, 地球物理學報, 38, 281-287.
    施行覺, 夏從俊, 吳永鋼, 1998. 儲層條件下波速的變化規律及其影響因素的實驗研究, 地球物理學報, 41, 234-240.

    QR CODE
    :::