跳到主要內容

簡易檢索 / 詳目顯示

研究生: 拉布蒂
RAPTI GHOSH
論文名稱: 奈米等級二維異質結構的先進物理特性及應用
Advanced Physical Property & Application Based on the Manipulation of Two-Dimensional Material Based Nano-Heterostructures
指導教授: 陳賜原
Szu-Yuan Chen
謝雅萍
Ya-Ping Hsieh
陳永芳
Yang-Fang Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 154
中文關鍵詞: 二維材料異質結構光-物質相互作用光偵檢器隨機雷射光電化學產生氫反應
外文關鍵詞: 2D Materials, Heterostructures, Light-Matter Interaction, Photodetectors, Random Lasing, Photoelectrochemical Hydrogen Evolution
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們正處在利用光電元件中單層二維材料的彎曲程度去得到更有效的光-物質交互作用的浪頭上。與原本的塊材材料相比,二維材料的量子侷限效應使我們可以改變原子薄膜的型態已引發一些令人矚目的物理化學現象。舉例來說,把這些二維材料堆疊起來可得到異質結構、伸縮可得皺紋結構、捲起來可得一維結構、或者包裹起來得到零維結構。不同維度的凡得瓦力結構對應到了不同的能隙以及載子的移動率,如皺紋結構能夠透過內部反射產生大量的電子;一維奈米捲的奈米結構可以限制電子的移動方向、不受外部的擾動。更特別的是,二維奈米片捲成一維捲軸狀所導致的彎曲會對電子和光的作用產生限制,光子的限制使材料產生相干性的雷射作用;螺旋狀的一維結構定位了激子並使其產生對偏振的光敏度。與扁平的結構相比,這種準一維結構的出色光捕獲能力提高了幾乎一個數量級的光催化效率,對這些奈米結構形態的操控可以使薄膜產生不同的空間梯度,改變其激子的生成機制和相應的載子壽命。石墨烯,TMD材料(例如 MoS2、WS2、ReS2)等這些能夠重複的機械應變的材料是很好用於做成不同形狀結構,二維TMD的另一個重要特徵是它們能夠產生原子級別精確度的異質結構,這些異質結構產生層跟層之間的激子並增強了光載子的解離作用,與高性能的量子點(如CdSe-ZnS, Perovskites)結合後,可以在介面上形成第二類型的能帶對齊。應變導致的異質TMD材料可以在H2和O2生成過程中充當有效的化學催化劑,更進一步來說,WS2/MoS2的異質卷軸結構是一種很高效的光催化劑材料,我們可以因此在異質介面上產生有效的光-物質交互作用以發現奇特的物理現象,最後可以在現實應用上開發出一種高效能且可靈活彎曲的裝置


    We are on the cusp of utilizing the flexural strength of the monolayer 2D films in optoelectronic devices to emphasize strong light-matter interaction at the molecular level. Manipulating the morphology of the atomically thin layer of 2D materials introduces some striking physio-chemical phenomena compared to their bulk as well as sheet counterpart due to the strong in-plane quantum confinement effect. These 2D materials can be stacked up into heterostructure, buckled up to form a wrinkle structure, rolled up into 1D, or wrapped up into the 0D structure. Different dimensional van der Waals structure tunes the energy bandgap and hence the corresponding carrier mobility. A wrinkle pattern structure is capable of generating an ample number of electrons by multiple internal reflections whereas unidirectional nanoscroll structure can confine the motion of the electron in the 1D axis without having any external perturbation. In particular, the rolling of 2D TMD nanosheets into 1D scrolls induces bending strain and produces a confinement for electronic and photonic interactions. Photonic confinement in these nanocavities stimulates coherent lasing actions. The helical 1D structure predominantly localizes the excitons in the circumferential direction giving rise to polarized photosensitivity. The excellent phototrapping quality of this quasi-1D structure helps to enhance photocatalytic efficiency by almost an order of magnitude compared to the flat counterpart. The manipulation of the morphology of these nano-structures generates a spatial strain gradient throughout the film which modulates their exciton generation mechanism and the corresponding carrier lifetime. Graphene, TMD materials (eg. MoS2, WS2, ReS2) being able to persist mechanical strain is preferably used to form deformed structures. Another important feature of 2D TMDs is their ability to produce atomically precise heterojunctions. The resulting heterojunctions produces interlayer excitons and enhances photocarrier dissociation. Upon hybridizing them with high yield quantum dots, (eg. CdSe-ZnS, Perovskites) type–II band alignments are formed at the heterostructured (2D-0D) interface. Strain induced heterogeneous TMD material act as an efficient photoelectrochemical catalyst in H2 and O2 generation process. Specifically, WS2/MoS2 heterojunction scroll structure act as an efficient photocatalyst material. Our approach thus enables strong light-matter interaction at 2D material heterojunctions for discovering exotic physical phenomena and developing novel high-performance flexible devices toward realistic applications.

    Chapter 1: Introduction 1 1.1 Optoelectronic device fabrication: 2 i) Photosensors: 2 ii) Stretchable Electronics: 2 iii) Random Lasing: 3 iv) Photoelectrochemical system: 3 1.2 Two-dimensional material 5 1.2.1 Graphene Family: 7 1.2.2 Xenes: 8 1.2.3 Transition-metal di chalcogenide(TMD): 8 1.3 Quantum Dots: 10 1.4 Heterostructure: 12 15 References 16 Chapter 2: Material Synthesis 21 2.1 Synthesis of Graphene 21 2.2 Synthesis of TMD materials: 22 2.2.1 Tungsten-di sulfide (WS2): 23 2.2.2 Molybdenum-di sulfide (MoS2): 23 2.2.3 Rhenium-di sulfide (ReS2): 24 2.3 Synthesis of quantum dots (QDs): 26 2.3.2 Perovskite quantum dot (PQD): 26 2.4 Synthesis of heterojunction: 27 2.4.1 MoS2/WS2 heterojunction film (2D/2D): 27 2.4.2 Conjugation of ReS2 nanoflake with perovskite quantum dots (2D/0D): 27 2.5 Synthesis of polymer substrate: 28 References 29 Chapter 3: Characterization techniques 31 3.1 Device fabrication 31 3.1.1. Wrinkle structured device: 31 3.1.2. Nanoscroll device fabrication: 32 3.2 Thermal evaporation technique 33 3.3 Spin coating technique 34 3.4 High Resolution Transmission Electron Microscopy (HRTEM) 34 3.5 Scanning Electron Microscopy (SEM) 35 3.6 X-ray photoelectron spectroscopy (XPS): 35 3.7 Raman spectroscopy 36 3.8 Photoluminescence Spectroscopy 36 3.9 Electrochemical three electrodes µ-capillary based system: 37 3.10 Electrical measurements: 39 3.11 Numerical Simulation: 39 3.11.1 Finite-Difference Time-Domain (FDTD) simulation study: 39 3.11.2 Ab Initio Calculation: 39 References 41 Chapter 4: QD/2D Hybrid Nanoscrolls: A New Class of Materials for High-Performance Polarized Photodetection and Ultra-Low Threshold Laser Action 43 4.1 Introduction 44 4.2 Results & Discussions 45 4.3 Heterostructured TMD NS with other 2D materials: 57 4.4 Conclusion 62 References: 63 Chapter 5: Enhancing the Photoelectrochemical Hydrogen Evolution Reaction through Nanoscrolling of 2D Materials Heterojunctions 68 5.1 Abstract: 68 5.2 Introduction 69 5.3 Results & Discussion 71 5.4 Conclusions 82 References: 84 Chapter 6: Heavy Mediator at Quantum Dot/Graphene Heterojunction for Efficient Charge Carrier Transfer: Alternative Approach for High Performance Optoelectronic Devices 91 6.1 Abstract: 91 6.2 Introduction 92 6.3 Results and Discussion 94 6.4 Conclusion 107 References: 108 Chapter 7: Exciton Manipulation for Enhancing the Photo-electrochemical Hydrogen Evolution Reaction in Wrinkled 2D/0D Heterojunction 113 7.1 Abstract 113 7.2 Introduction: 113 7.3 Results & Discussion: 114 7.4 Conclusion: 122 References: 123 Chapter 8: Conclusion 126 Chapter 9: Future Work 130

    1. Cummins, D. R.; Martinez, U.; Sherehiy, A.; Kappera, R.; Martinez-Garcia, A.; Schulze, R. K.; Jasinski, J.; Zhang, J.; Gupta, R. K.; Lou, J.; Chhowalla, M.; Sumanasekera, G.; Mohite, A. D.; Sunkara, M. K.; Gupta, G., Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction. Nat. Commun. 2016, 7 (1), 11857.
    2. Ghosh, R.; Singh, M.; Chang, L. W.; Lin, H.-I.; Chen, Y. S.; Muthu, J.; Papnai, B.; Kang, Y. S.; Liao, Y.-M.; Bera, K. P.; Guo, G.-Y.; Hsieh, Y.-P.; Hofmann, M.; Chen, Y.-F., Enhancing the Photoelectrochemical Hydrogen Evolution Reaction through Nanoscrolling of Two-Dimensional Material Heterojunctions. ACS Nano 2022.
    3. Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S., Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets. J. Am. Chem. Soc. 2013, 135 (28), 10274-10277.
    4. Takahashi, Y.; Kobayashi, Y.; Wang, Z.; Ito, Y.; Ota, M.; Ida, H.; Kumatani, A.; Miyazawa, K.; Fujita, T.; Shiku, H.; Korchev, Y. E.; Miyata, Y.; Fukuma, T.; Chen, M.; Matsue, T., High-Resolution Electrochemical Mapping of the Hydrogen Evolution Reaction on Transition-Metal Dichalcogenide Nanosheets. Angew. Chem. Int. Ed. 2020, 59 (9), 3601-3608.
    5. Lee, J. Y.; Kang, S.; Lee, D.; Choi, S.; Yang, S.; Kim, K.; Kim, Y. S.; Kwon, K. C.; Choi, S. h.; Kim, S. M.; Kim, J.; Park, J.; Park, H.; Huh, W.; Kang, H. S.; Lee, S. W.; Park, H.-G.; Ko, M. J.; Cheng, H.; Han, S.; Jang, H. W.; Lee, C.-H., Boosting the photocatalytic hydrogen evolution performance via an atomically thin 2D heterojunction visualized by scanning photoelectrochemical microscopy. Nano Energy 2019, 65, 104053.
    6. Sumesh, C. K.; Peter, S. C., Two-dimensional semiconductor transition metal based chalcogenide based heterostructures for water splitting applications. Dalton Transactions 2019, 48 (34), 12772-12802.
    7. Seo, S.; Kim, S.; Choi, H.; Lee, J.; Yoon, H.; Piao, G.; Park, J.-C.; Jung, Y.; Song, J.; Jeong, S. Y.; Park, H.; Lee, S., Direct In Situ Growth of Centimeter-Scale Multi-Heterojunction MoS2/WS2/WSe2 Thin-Film Catalyst for Photo-Electrochemical Hydrogen Evolution. Adv. Sci. 2019, 6 (13), 1900301.
    8. Peng, Z.; Chen, X.; Fan, Y.; Srolovitz, D. J.; Lei, D., Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light Sci. Appl. 2020, 9 (1), 190.
    9. Ghosh, R.; Yadav, K.; Kataria, M.; Lin, H.-I.; Paul Inbaraj, C. R.; Liao, Y.-M.; Nguyen, Y.; Lu, C.-H.; Hofmann, M.; Sankar, R.; Shih, W.-H.; Hsieh, Y.-P.; Chen, Y.-F., Heavy Mediator at Quantum Dot/Graphene Heterojunction for Efficient Charge Carrier Transfer: Alternative Approach for High-Performance Optoelectronic Devices. ACS Appl. Mater. Interfaces 2019, 11 (29), 26518-26527.
    10. Lee, J.; Yun, S. J.; Seo, C.; Cho, K.; Kim, T. S.; An, G. H.; Kang, K.; Lee, H. S.; Kim, J., Switchable, Tunable, and Directable Exciton Funneling in Periodically Wrinkled WS2. Nano Lett. 2021, 21 (1), 43-50.
    11. Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F.; Pantelides, S. T.; Bolotin, K. I., Bandgap Engineering of Strained Monolayer and Bilayer MoS2. Nano Lett. 2013, 13 (8), 3626-3630.
    12. Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; van der Zant, H. S. J.; Steele, G. A., Local Strain Engineering in Atomically Thin MoS2. ACS Nano 2013, 13 (11), 5361-5366.
    13. Zhou, X.; Tian, Z.; Kim, H. J.; Wang, Y.; Xu, B.; Pan, R.; Chang, Y. J.; Di, Z.; Zhou, P.; Mei, Y., Rolling up MoSe2 Nanomembranes as a Sensitive Tubular Photodetector. Small 2019, 15 (42), 1902528.
    14. Long, C.; Dai, Y.; Li, J.; Jin, H., Exciton manipulation in rippled transition metal dichalcogenides. Nanoscale 2020, 12 (41), 21124-21130.
    15. Aslan, O. B.; Deng, M.; Heinz, T. F., Strain tuning of excitons in monolayer WSe2. Phys. Rev. B 2018, 98 (11), 115308.
    16. Bera, J.; Sahu, S., Strain induced valley degeneracy: a route to the enhancement of thermoelectric properties of monolayer WS2. RSC Adv. 2019, 9 (43), 25216-25224.
    17. Deng, S.; Che, S.; Debbarma, R.; Berry, V., Strain in a single wrinkle on an MoS2 flake for in-plane realignment of band structure for enhanced photo-response. Nanoscale 2019, 11 (2), 504-511.
    18. Hwang, D. Y.; Choi, K. H.; Park, J. E.; Suh, D. H., Highly efficient hydrogen evolution reaction by strain and phase engineering in composites of Pt and MoS2 nano-scrolls. Phys. Chem. Chem. Phys. 2017, 19 (28), 18356-18365.
    19. Chung, Y.-J.; Yang, C.-S.; Lee, J.-T.; Wu, G. H.; Wu, J. M., Coupling Effect of Piezo–Flexocatalytic Hydrogen Evolution with Hybrid 1T- and 2H-Phase Few-Layered MoSe2 Nanosheets. Adv. Energy Mater. 2020, 10 (42), 2002082.
    20. B. G. Pollet, Power Ultrasound in Electrochemistry: From Versatile Laboratory Tool to Engineering Solution. 2012.
    21. J. Klima, “Application of ultrasound in electrochemistry. An overview of mechanisms and design of experimental arrangement,” Ultrasonics, 2011, 51 (2), 202–209.

    QR CODE
    :::