| 研究生: |
宋采倫 Tsai-Lung Sung |
|---|---|
| 論文名稱: |
以超音波快速合成含苯環官能基之中孔洞材料暨硫醇、苯環及雙硫官能基之中孔洞材料合成與鑑定 |
| 指導教授: |
高憲明
Hsien-Ming Kao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 182 |
| 中文關鍵詞: | 中孔洞材料 、苯環官能基 、超音波合成 、雙硫官能基 |
| 外文關鍵詞: | Ultrasonic synthesis, BTEB, PMOs, mesoporous |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文分為三個部分,第一部分則是利用超音波快速合成含苯環官能基之PMOs (Periodic mesoporous organosilicas),此部分是以P123 (Pluronic 123) 作為模板試劑,1,4-bis(triethoxysilyl)benzene (BTEB) 為矽源,在酸性條件下利用超音波震盪來合成含苯環的 PMOs,此部分可以將傳統合成所需的時間由數天降為數小時,大幅縮短合成時間且保持良好結構及高表面積。
第二部分是合成雙官能基的中孔洞材料,利用 Brij-76 (C18H37(OCH2CH2)10OH) 為模板試劑,1,4-bis(triethoxysilyl)benzene (BTEB) 與3-Mercaptopropyltrimethoxysilane (MPTMS) 為共同矽源,在酸性條件下合成具有苯環與硫醇官能基之中孔洞材料,之後再利用 THF 酸溶液裂解模板 Brij-76,得到雙官能基化的中孔洞材料 Brij-BTEB-SH,而 SH 含量可達40 %,仍具有良好的結構規則度。
第三部分是比較利用硫醇官能基矽源氧化成雙硫官能基及原本就是雙硫官能基的矽源所合成的材料差異。SS-SBA-15是用MPTMS 和 Tetraethyl orthosilicate (TEOS) 為共同矽源先合成 SH-SBA-15 ,再利用48% H2SO4 裂解模板並且氧化SH 成 SS,而 DS-SBA-15 是用TEOS 與 Bis[3-(triethoxysilyl)propyl] disulfide (BTSPDS) 為共同矽源,合成出具有雙硫官能基的中孔洞材料,藉由 X-ray 繞射儀 (XRD)、固態核磁共振儀 (Solid-state NMR)、熱重分析儀 (TGA) 及氮氣等溫吸脫附儀等儀器鑑定材料的特性。再將 SS-SBA-15 和 DS-SBA-15將所合成之具雙硫官能基中孔洞材料 SBA-15應用於金屬離子吸附,測試此材料對Hg2+ 吸附的能力。
This thesis is divided into three parts. Part one, rapid synthesis route to synthesize ordered mesoporous benzene-silicas in a short time developed by using ultrasonic irradiation. This synthesis route effectively reduces the total synthesis time from days to a few hours, which is much shorter than the conventional synthesis methods. The phenylene-bridged mesoporous materials exhibited a hexagonally ordered mesostructure with high surface area over 700 m2/g, pore volume over 0.6 cm3/g and large pore diameter in the range of 4.3–5.2 nm.
In part two, well-ordered hexagonal mesoporous silica SBA-15 functionalized with phenylene and thiol bifunctional groups have been synthesized via co-condensation of 1,4-bis(triethoxysilyl)benzene (BTEB) and 3-Mercaptopropyltrimethoxysilane (MPTMS) under acidic condition. The materials were characterized by a variety of techniques including power X-ray diffraction (XRD), nitrogen sorption measurements, 13C solid-state NMR spectroscopy, and thermogravimetric analysis (TGA).
In part three, well-ordered hexagonal mesoporous silica SBA-15 functionalized with disulfide functional groups have been synthesized via co-condensation of tetraethyl orthosilicate (TEOS) and bis[3-(triethoxysilyl)propyl] disulfide (BTSPDS) templated by P123 under acid condition. Moreover, we synthesized a series of SBA-15 samples with thio functional group via co-condensation of TEOS and MPTMS, and used 48% H2SO4 to remove the template and also oxidized thio groups to disulfide groups. We compared these two series of samples and used those samples to adsorb Hg2+ metal ion.
1. IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem. 1972, 31, 57.
2. Ward, W. Academic press 1984, p.11
3. S. Bhatia, CRC press 1990, p.7
4. Kresge, C. T.; Leonowice, M. E.; Roth, W. J. ; Vartuli, J. C. ; Beck, J. S. Nature 1992, 359, 710.
5. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K.D.; Chu, C. T.; Oslon, D. H.; Sheppard, E. W.; Higgins, S.B.; Schlenker, J. Am. Chem. Soc. 1992, 114, 10834.
6. F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Angew. Chem. Int. Ed. 2006, 45, 3216.
7. Cheng, C. F.; Luan, Z.; Klinowski, J. Langmuir 1995, 11, 2815.
8. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger,P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Nature 1994, 368, 317-321.
9. Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky, G.; Shin, H. J.; Ryoo, R. Nature 2000, 408, 449-453.
10. Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 6024.
11. Cheng, M. J.; Wang, Z. B.; Sakurai, K.; Kumata, F.; Saito, T.; Komatsu, T.; Yashima, T. Chem. Lett. 1999, 2, 131.
12. Luan, Z. H.; Hartmann, M.; Zhao, D. Y.; Zhou, W. Z.; Kevan, L. Chem. Mater. 1999, 11, 1621.
13. Yue, Y. H.; Gedeon, A.; Bonardet, J. L.; Melosh, N.; D'' Espinose, J. B.; Fraissard . Chem. Commun. 1999, 19, 1967.
14. Sumiya, S.; Oumi, Y.; Uozumi, T.; Sano, T. J. Mater. Chem. 2001, 11, 1111.
15. Han, Y.; Xiao, F. S.; Wu, S.; Sun, Y. Y.; Meng, X. J.; Li., D. S.; Lin, S.; Deng, F.; Ai, X. J. J. Phys. Chem. B. 2001, 105, 7963.
16. Fenelonov, V. B.; Derevyankin, A. Y.; Kirik, S. D.; Solovyov, L. A.; Shmakov, A. N.; Bonardet, J. L.; Gedeon, A.; Romannikov, V. N. Micropor. Mesopor. Mater. 2001, 44, 33.
17. Han, Y.; Wu, S.; Sun, Y. Y.; Li, D. S.; Xiao, F. S.; Liu, J.; Zhang, X. Z. Chem. Mater. 2002, 14, 1144.
18. Corma, A.; Navarro, M. T.; Pariente, J. P. J. Chem. Comm. 1994, 147.
19. Park, D. H.; Cheng, C. F.; Klinowski, J. J. Mater. Chem. 1997, 7, 159.
20. Luan, Z. H.; Maes, E. M.; van der Heide PAW.; Zhao, D. Y.; Czernuszewicz, R. S.; Kevan, L. Chem. Mater. 1999, 11, 3680.
21. Luan, Z. H.; Bae, J. Y.; Kevan, L. Chem. Mater. 2000, 12, 3202.
22. Morey, M. S.; O''Brien, S.; Schwarz, S.; Stucky, G. D. Chem. Mater. 2000, 12, 898.
23. Newalkar, B. L.; Olanrewaju, J.; Komarneni, S. Chem. Mater. 2001, 13, 552.
24. Chen, H. R.; Shi, J. L.; Zhang, W. H.; Ruan, M. L.; Yan, D. S. Chem. Mater. 2001, 13, 1035.
25. Luan, Z. H.; Kevan, L. Micropor. Mesopor. Mater. 2001, 44, 337.
26. Newalkar, B. L.; Olanrewaju, J.; Komarneni, S. J. Phys. Chem. B 2001, 105, 8356.
27. Wu, P.; Tatsumi, T.; Komatsu, T.; Yashima, T. Chem. Mater. 2002, 14, 1657.
28. Huang, M. H.; Choudrey, A.; Yang, P. D. Chem. Commun. 2000, 12, 1063.
29. Han, Y. J.; Kim, J. M.; Stucky, G. D. Chem. Mater. 2000, 12, 2068.
30. Wang, Y.; Noguchi, M.; Takahashi, Y.; Ohtsuka, Y. Catal. Today 2001, 68, 3.
31. Lee, K. B.; Choi, C. S.; Oh, S. J.; Ri, H. C.; Cheon, J. J Phys. IV 2001, 11, 481.
32. Burri, D. R.; Jun, K. W.; Kim, Y. H.; Kim, J. M.; Park, S. E.; Yoo, J. S. Chem. Lett. 2002, 2, 212.
33. Gao, F.; Lu, Q. Y.; Liu, X. Y.; Yan, Y. S.; Zhao, D. Y. Nano. Lett. 2001, 1, 743.
34. Khodakov, A. Y.; Griboval-Constant, A.; Bechara, R.; Zholobenko, V. L. J. Catal. 2002, 206, 230.
35. Zhao, J. W.; Gao, F.; Fu, Y. L.; Jin, W.; Yang, P. Y.; Zhao, D. Y. Chem. Commun. 2002, 7, 752.
36. Huo,O. ; Margolese, D. I.; Ciesla, U. ; Demuth, D. G. ; Freng, P.; Gier, T. E.; Sieger, P. A.; Firouzi, B. F.; Chmelka, F. Schuth.; Stukey, G. D. Chem. Mater. 1994, 6, 1176.
37. Lin, H. P.; Mou, C. Y. Acc. Chem. Res. 2002, 927.
38. Firouzi, A.; Kumar, D.; Bull, L. M.; Besier,T.; Sieger, P.; Huo, Q.; Walker, S. A.; Zasadzinski, J. A.; Glinka, C.; Nicol, J.; Margolese, D.; Stucky, G. D.; Chmelka, G. F. Science 1995, 267, 1138-1143.
39. Todros, T. F. Academic Press, London 1984. 27.
40. Tanford, C. Wiley, New York 1973. 10.
41. Liu, J.; Feng, X.; Fryxell, G. E.; Wang, L.; Kim, A. Y.; Gong, M. L. Adv. Mater. 1998, 10, 2.161.
42. Van Rhijn, W. M.; De Vos, D. E.; Sels, B. F.; Bossaert, W. M.; Jacobs, P. A. Chem. Commun. 1998, 317.
43. Suslick, K. S. Science 1990, 247, 1439.
44. T. J. Mason, Royal Society of Chemistry, London 1990. 151.
45. Suslick, K. S. ED. VCH, New York 1988.1.
46. Suslick, K. S. Casadonate, J. J. Am. Chem. Soc. 1987, 109, 3459.
47. Suslick, K.S. Flint, E. B. J. Am. Chem. Soc. 1989,111, 2342.
48. Suslick, K. S. Science 1991, 211, 1397.
49. Kim, W.; Saito, F. Ultrasonics Sonochemistry 2001, 8, 85..
50. Enomoto, N.; Koyano, T.; Nakagawa, Z. Ultrasonics Sonochemistry 1996, 3, 105.
51. Kim, J. M.; Sakamoto, Y.; Hwang, Y. K.; Kwon, Y.-U.; Terasaki, O.; Park, S.-E.; Stucky, G. D. Journal of Physical Chemistry B 2002, 106, 2552.
52. (a) Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 1999, 121, 9611.
(b) Melde, B. J.; Holland, B. T.; Bland, C. F.; Stein, A. Chem, Mater. 1998, 11, 3302.
53. Inagaki, S.; Guan, S.; Ohsuna, T.; Terasaki, O. Nature 2002, 416, 304.
54. Bion, N.; Ferreira, P.; Valente, A.; Isabel, S. J. Mater. Chem. 2003, 13, 1910.
55. Kapoor, M. P.; Yang, Q.; Inagaki, S. Chem. Mater. 2004, 16, 1213.
56. Inagaki, S.; Goto, Y. Chem. Commun. 2002, 2410.
57. Yang, Q.; Kapoor, M. P.; Inagaki, S. J. Am. Chem. Soc. 2002, 124, 9694.
58. Yang, Q.; Liu, J.; Kapoor, M. P.; Inagaki, S.; Can, L. J. Catal. 2004, 228, 265.
59. Grudzien, R. M.; Grabicka, B. E.; Jaroniec, M. Adsorption 2006, 12, 293.
60. Hao, N.; Han, L.; Yang, Y.; Wanga, H.; Webley, P. A.; Zhao, D. Appl. Sur. Sci. 2010, 256, 5334.
61. Tang, X.; Liu, S.; Wang, Y.; Huang, W.; Sominski, E.; Palchik, O.; Koltypin, Y.; Gedanken, A. Chem. Commun. 2000, 2119.
62. Lee, S. K.; Lee, J.; Joo, J.; Hyeon, T.; Ahn, W. S.; Lee, H.; Lee, C.; Choi, W. Ind. Eng. Chem. 2003, 9, 83.
63. Mohanty, P.; Lin. N. M. K.; Landskron, K. Langmuir 2010, 26, 1147.
64. Yang, C. M.; Zibrowius, B.; Schmidt, W.; Schüth, F. Chem. Mater. 2004, 16, 2918.
65. Sayari, A.; Zhou, W.; Wenhui, W. Chem. Mater. 2003, 15, 4886.
66. Hao, N.; Han, L.; Yang, Y.; Wanga, H.; Webley, P. A.; Zhao, D. Appl. Sur. Sci. 2010, 256, 5334.
67. Wu, H. Y.; Liao, C. H.; Pan, Y. C.; Yeh, C. L.; Kao, H. M. Micropor. Mesopor. Mater. 2009, 119, 109.
68. 國家同步輻射中心, http://www.srrc.gov.tw/chinese/index.aspx。
69. Baiker, A. Int. Chem. Eng. 1985, 17, 25.
70. Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E. J. Am. Chem. Soc. 1940, 62, 1723.
71. Barrett. E. P.; Joyner, L. G.; Halenda, P. P. J. Am. Chem. Soc. 1951, 73, 373.
72. 劉銘璋; 林岱瑋; 王漢松; 張秋玲 第七章 熱分析, 台灣大學化學系.
73. Pan, Y. C.; Liao, C. H.; Kao, H. M. Chem. The Chinese Chemical Society, Taipei 2008, 66, 1.
74. Bennett, A. E.; Rienstra, C. M.; Auger, M.; Lakshmi, K.V.; Griffin, R. G. J. Chem. Phys. 1995, 103. 6951.
75. Ashida, J.; Asakura, T. J. Magn. Reson. 2003, 165, 180.
76. Goto, Y.; Inagaki, S. Micropor. Mesopor. Mater. 2006, 89, 103.
77. Wim, M.; Van Rhijn, Dirk E.; De Vos, Bert F.; Sels, Wim D.; Pierre A, Jacobs. Chem. Commun. 1998, 317.
78. Feng, X.;Fryxell, G. E.;Wang, L. Q.;Kim, A. Y.;Liu, J.;Kemmer, K. M. Science 1997, 276, 923.
79. Brown, J.; Richer, R.; Mercier, L. Micropor. Mesopor. Mater. 2000, 37, 41.
80. Kao, H. M.; Cheng, C. T.; Chung, C. H. Chem. Commun. 2011, 47. 5897.
81. Vetrivel, S.; Chen, C.T.; Kao, H. M. New J. Chem. 2010. 34, 2109.
82. Herzfeld, J.; Berger, A. E. J. Chem. Phys. 1980, 73, 6021.
83. Tzou, D. L. Chem. The Chinese Chemical Society, Taipei 2008, 66, 1.
84. Zilm, K. W.; Henry, S.; Alvin, J. B.; David, M. G. J. Am. Chem. Soc. 1983, 105, 3333.
85. Ann, E.; Polenova, T. “Solid-State NMR Studies of Biopolymers “ Wiley, New York 2010. 76.