跳到主要內容

簡易檢索 / 詳目顯示

研究生: 伊莎蕊
Radissa Dzaky Issafira
論文名稱: 高壓高溫甲苯汽油替代燃料與乙醇混合物之層紊流燃燒速度和廢氣排放量測
High Pressure, High Temperature Laminar and Turbulent Burning Velocities of a Toluene Gasoline Surrogate Blending with Ethanol and Their Emissions Measurements
指導教授: 施聖洋
Shenq-Yang, Shy
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 95
中文關鍵詞: 甲苯參考燃料乙醇混合物紊流燃燒速度高溫高壓燃燒紊流速度一般通式NOx和CO排放量
外文關鍵詞: Toluene reference fuel, Ethanol blend, Turbulent burning velocity, High-pressure/high-temperature combustion, General Correlation, NOx and CO emissions
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文量測高溫高壓層、紊流條件下,中心引燃之球狀火焰的燃燒速度(SL和ST)及其氮氧化物NOx和一氧化碳CO的排放量,以研究甲苯汽油替代燃料 (Toluene Reference Fuel; TRF85)加入15%和45%乙醇混合物所造成的影響。TRF85由77.4%異辛烷(i-C8H18)、17.6%正庚烷(n-C7H16)和5%甲苯(C7H8)所組成,其中i-C8H18、n-C7H16和C7H8的研究辛烷值(Research Octane Number, RON)分別為0、100和121。本實驗於一高壓高溫雙腔體十字型風扇擾動預混紊流燃燒設備進行,它可產生一近似等向性的紊流場。實驗溫度保持在373 K,其中方均根紊流擾動速度 (u' = 0-4.3 m/s) 和初始壓力(p = 1-5 atm)。本研究有三個重點。(1)乙醇混合物在不同u'、p下對SL和ST的影響,結果顯示15%的乙醇對SL僅有小增幅,然而對ST的影響較大,增幅會隨著u'和p的增加而放大,這是因為紊流導致火焰表面積增加使ST與放熱率增加而顯著上升。此外,乙醇主要中間產物乙醛(C2H4O)可以促進燃料氧化過程。再者,紊流雷諾數ReT, flow = u'LI/v隨p的增加而增加,因為v〜ρ-1〜p-1,其中LI是紊流積分長度尺度,而v和ρ是運動黏滯系數與反應物密度。(2)針對ST一般通式在考慮Le數(Lewis number)下,對當前TRF85、添加15% 或45%酒精之TRF85及之前異辛烷和PRF95的 ST數據作相關分析,當前數據在這些一般通式中有良好的吻合。(3)在高壓和高紊流條件下添加45%乙醇對TRF85的CO和NOx排放的影響。因為乙醇潛熱較高,使火焰溫度降低,添加乙醇在3 atm和1 atm下分別減少約23%和11%的NOx排放量。然而主要中間產物乙醛的分子間鍵能較低,較容易分解產生CO,故在3 atm和1 atm下分別增加約5%和29%的CO排放量。NOx、CO排放量均隨p增加而上升,NOx的增加是由於氧和氮原子的增加,而CO的增加則是因為燃氣與氧氣反應的時間有限。而NOx和CO排放也會隨著u'的增加而增加。NOx的增加歸因於燃燒溫度的提高,而CO的增加則是因為時間太短,使燃料無法完全的氧化。最後,這些結果有助於我們對火花點火引擎火焰傳播之了解。

    關鍵詞:甲苯參考燃料、乙醇混合物、紊流燃燒速度、高溫高壓燃燒、紊流速度一般通式、NOx和CO排放量


    In this thesis we investigate experimentally the influences of 15% and 45% ethanol blends in a stoichiometric gasoline surrogate (Toluene Reference Fuel, TRF85) via measurements of laminar and turbulent burning velocities (SL and ST) of spherically expanding flames and their associated NOx and CO emissions. TRF85 consists of 77.4 % iso-octane (i-C8H18), 17.6% n-heptane (n-C7H16), and 5% toluene (C7H8), where i-C8H18, n-C7H16, and C7H8 have 0, 100, and 121 research octane number, respectively. Experiments are conducted in a double-chamber, fan-stirred constant-temperature pressure cruciform burner capable of generating near-isotropic turbulence with negligible mean velocities. The initial temperature of the experimentation domain is kept constant at T = 373 K, where the r.m.s turbulent fluctuating velocity (u') is varied from 0-4.3 m/s and the initial pressure (p) is varied from 1 atm to 5 atm. There are three main points found in this study. First is the effect of ethanol blends on SL and ST as a function of p at various u' conditions. Results show that 15% ethanol blend only has a minor enhancing influence on SL, but it has a more significant influence on ST especially with increasing u' and p due to the fact that turbulence can increase ST through the increase of flame surface area, thus resulting in an increase of heat release rate. Further, the presence of ethanol major intermediate species, the acetaldehyde (C2H4O), can promote the oxidation process. Moreover, the flow turbulent Reynolds number ReT,flow = u'L/v increases with p because v ~ ρ-1 ~ p-1, where LI is the integral length scale of turbulence and v and ρ are the kinematic viscosity and the density of the reactants. The second point concerns general correlations of the present ST data of TRF85, TRF85+15E, TRF85+45E together with previous ST data of iso-octane and PRF95 with the consideration of Le. Results show that the present ST data can be collapsed well on the general correlations proposed. The third point relates to the influence of 45% ethanol blends on CO and NOx emissions of TRF85 under high pressure and high turbulence condition. It is found that the ethanol diluents reduce NOx emission for about 23% and 11% at p = 3 atm and p = 1 atm due to the high latent heat of ethanol, which lowers the flame temperature. However, CO emission increases with the addition of ethanol diluents for about 5% and 29% in p = 3 atm and p = 1 atm due to the rise of acetaldehyde as an indication of low bond dissociated energy. Both NOx and CO emissions increase with p. The increase of NOx is due to the enhancement of oxygen and nitrogen atoms. CO increase is because the limited time to react with oxygen. Similarly, both NOx and CO emissions also increase with increasing u'. NOx increase is owing to the enhancement of combustion temperature. CO increase is because the time is too short to complete the fuel/air oxidation. Finally, these results should be useful for our understanding of flame propagation in spark ignition engines.

    摘要........................................................................................................................................ i Abstract ................................................................................................................................ ii Acknowledgments............................................................................................................... iii Contents............................................................................................................................... iv List of Tables ...................................................................................................................... vi List of Figures ................................................................................................................... vii Nomenclature....................................................................................................................... x Chapter I Introduction........................................................................................................ 1 1.1 Background and motivation......................................................................................... 1 1.1.1 Ethanol .................................................................................................................. 1 1.1.2 Gasoline Surrogate with ethanol diluents.............................................................. 2 1.1.3 Turbulent Burning Velocity .................................................................................. 3 1.2 Objectives of this study................................................................................................ 4 1.3 Thesis Outline .............................................................................................................. 5 Chapter II Literature Review............................................................................................. 6 2.1 Flame propagation of spherically expanding flame..................................................... 6 2.1.1 Flame propagation speed (SF) .............................................................................. 6 2.1.2 Flame stretch rate (κ)............................................................................................. 7 2.2 Laminar premixed combustion .................................................................................... 9 2.2.1 Laminar burning velocity (SL)............................................................................... 9 2.2.2 Temperature, pressure, and fuel composition effect on laminar burning velocities ...................................................................................................................................... 10 2.3 Laminar burning velocities and chemical kinetics of ethanol ................................... 14 2.3.1 Laminar burning velocity of gasoline surrogate with ethanol dilution ............... 16 2.3.2 The effect of ethanol diluents with gasoline surrogate to exhaust gas emission 19 2.4 Turbulent premixed combustion................................................................................ 21 2.4.1 Turbulent combustion theory .............................................................................. 21 2.4.2 Turbulence Phase diagram .................................................................................. 23 2.4.3 Turbulent burning velocity (ST)........................................................................... 25 2.4.4 Pressure effect on turbulent burning velocity (ST) .............................................. 27 2.4.5 Effect of turbulence on chemical pathways ........................................................ 28v 2.5 Correlation of turbulent burning velocity .................................................................. 30 2.5.1 ST correlation proposed by Bradley et al............................................................. 30 2.5.2 ST correlation proposed by Kobayashi et al. ....................................................... 31 2.5.3 ST correlation proposed by Chaudhuri et al. ....................................................... 32 2.5.4 ST correlation proposed by Liu et al. .................................................................. 34 2.5.5 ST correlation proposed by Wang et al. .............................................................. 35 Chapter III Experimental Setup and Methods............................................................... 37 3.1 Premixed combustion system .................................................................................... 37 3.1.1 Large-double combustion chamber..................................................................... 37 3.1.2 Heating system .................................................................................................... 38 3.1.3 Fuel supplied system ........................................................................................... 39 3.1.3 Flame Imaging System........................................................................................ 40 3.2 Parameters calculation and flame image analysis...................................................... 40 3.2.1 Equivalence ratio................................................................................................. 40 3.2.2 Lewis number...................................................................................................... 42 3.3 Experimental Procedures ........................................................................................... 43 3.3.1 Combustion experiment ...................................................................................... 43 3.3.2 Emission gas experiment..................................................................................... 44 Chapter IV Results and Discussions ................................................................................ 46 4.1 Determination of laminar burning velocities ............................................................. 46 4.2 Measured results of laminar burning velocities......................................................... 47 4.3 Pressure effect on the laminar burning velocities...................................................... 48 4.4 Determination of turbulent burning velocities........................................................... 49 4.5 Ethanol diluent effect on laminar and turbulent burning velocity ............................. 52 4.6 Pressure effect on the turbulent burning velocity with ethanol diluents.................... 55 4.7 Turbulent burning velocity normalization effect ....................................................... 56 4.8 Normalization of turbulent burning velocity and r.m.s turbulence intensity............. 57 4.9 General ST correlation ................................................................................................ 58 4.10 The effect of ethanol diluents on gasoline surrogate exhaust emission................... 60 Chapter V Conclusions and Future Works..................................................................... 67 Bibliography....................................................................................................................... 69

    [1] K.F. Yee, A.R. Mohamed, S.H. Tan, A review on the evolution of ethyl tert-butyl ether
    (ETBE) and its future prospects, Renewable Sustainable Energy Rev. 22 (2013) 604-
    620.
    [2] L. Jamison, August 2020 Monthly Energy Review, Report No. DOE/EIA‐0035(2020/8)
    U.S Energy Information Administration, Washington, USA, 2020.
    [3] U.S Department of Energy, Alternative Fuels Data Center, Renewable Fuel Standard.
    (https://afdc.energy.gov/laws/RFS.html)
    [4] G.B. Machado, J.E.M. Barros, S.L. Braga, C.V.M. Braga, E.J. de Oliveira, A.H.M.d.F.T.
    da Silva, L.d.O. Carvalho, Investigations on surrogate fuels for high-octane oxygenated
    gasolines, Fuel 90 (2011) 640-646.
    [5] M. Waqas, N. Naser, M. Sarathy, K. Morganti, K. Al-Qurashi, B. Johansson, Blending
    octane number of ethanol in HCCI, SI and CI combustion modes, SAE Int. J. Fuels
    Lubr. 9 (2016) 659-682.
    [6] S.M. Sarathy, A. Farooq, G.T. Kalghatgi, Recent progress in gasoline surrogate fuels,
    Prog. Energy Combust. Sci. 65 (2018) 67-108.
    [7] O.A. Mannaa, M.S. Mansour, W.L. Roberts, S.H. Chung, Influence of ethanol and
    exhaust gas recirculation on laminar burning behaviors of fuels for advanced
    combustion engines (FACE-C) gasoline and its surrogate, Energy Fuels 31 (2017)
    14104−14115.
    [8] O. Mannaa, Laminar burning velocities at elevated pressures for gasoline and gasoline
    surrogates associated with RON, Combust. Flame 162 (2015) 2311-2321.
    [9] O. Mannaa, P. Brequigny, C. Mounaim-Rousselle, F. Foucher, S.H. Chung, W.L.
    Roberts, Turbulent burning characteristics of FACE-C gasoline and TPRF blend
    associated with the same RON at elevated pressures, Exp. Therm Fluid Sci. 95 (2018)
    104-114.
    [10] L. Sileghem, V.A. Alekseev, J. Vancoillie, K.M. Van Geem, E.J.K. Nilsson, S. Verhelst,
    A.A. Konnov, Laminar burning velocity of gasoline and the gasoline surrogate
    components iso-octane, n-heptane and toluene, Fuel 112 (2013) 355-365.
    [11] Y.H. Liao, W.L. Roberts, Laminar flame speeds of gasoline surrogates measured with
    the flat flame method, Energy Fuels 30 (2016) 1317−1324.70
    [12] O. Mannaa, Laminar burning velocities of fuels for advanced combustion engines
    (FACE) gasoline and gasoline surrogates with and without ethanol blending associated
    with octane rating, Combust. Sci. Technol. 188 (2016) 692-706.
    [13] J.A. Piehl, A. Zyada, L. Bravo, O. Samimi-Abianeh, Review of oxidation of gasoline
    surrogates and its components, J. Combust. 2018 (2018) 1-27.
    [14] P. Dirrenberger, P.A. Glaude, R. Bounaceur, H. Le Gall, A.P. da Cruz, A.A. Konnov,
    F. Battin-Leclerc, Laminar burning velocity of gasolines with addition of ethanol, Fuel
    115 (2014) 162-169.
    [15] D. Bradley, M. Lawes, M.S. Mansour, Correlation of turbulent burning velocities of
    ethanol–air, measured in a fan-stirred bomb up to 1.2MPa, Combust. Flame 158 (2011)
    123-138.
    [16] H. Kobayashi, Y. Kawabata, K. Maruta, Experimental study on general correlation of
    turbulent burning velocity at high pressure, Symp. (Int.) Combust. 27 (1998) 941-948.
    [17] S. Chaudhuri, V. Akkerman, C.K. Law, Spectral formulation of turbulent flame speed
    with consideration of hydrodynamic instability, Phys. Rev. E: Stat., Nonlinear, Soft
    Matter Phys. 84 (2011) 026322 (1-14).
    [18] X. Cai, J. Wang, Z. Bian, H. Zhao, M. Zhang, Z. Huang, Self-similar propagation and
    turbulent burning velocity of CH4/H2/air expanding flames: Effect of Lewis number,
    Combust. Flame 212 (2020) 1-12.
    [19] C.C. Liu, S.S. Shy, M.W. Peng, C.W. Chiu, Y.C. Dong, High-pressure burning
    velocities measurements for centrally-ignited premixed methane/air flames interacting
    with intense near-isotropic turbulence at constant Reynolds numbers, Combust. Flame
    159 (2012) 2608-2619.
    [20] M. Faghih, Z. Chen, The constant-volume propagating spherical flame method for
    laminar flame speed measurement, Sci. Bull. 61 (2016) 1296-1310.
    [21] J. Jayachandran, A. Lefebvre, R. Zhao, F. Halter, E. Varea, B. Renou, F.N.
    Egolfopoulos, A study of propagation of spherically expanding and counterflow laminar
    flames using direct measurements and numerical simulations, Proc. Combust. Inst. 35
    (2015) 695-702.
    [22] C. Xiouris, T. Ye, J. Jayachandran, F.N. Egolfopoulos, Laminar flame speeds under
    engine-relevant conditions: Uncertainty quantification and minimization in spherically
    expanding flame experiments, Combust. Flame 163 (2016) 270-283.
    [23] M.T. Nguyen, D. Yu, C. Chen, S. Shy, General correlations of iso-octane turbulent
    burning velocities relevant to spark ignition engines, Energies 12 (2019) 1848-1860.71
    [24] L.J. Jiang, S.S. Shy, W.Y. Li, H.M. Huang, M.T. Nguyen, High-temperature, highpressure burning velocities of expanding turbulent premixed flames and their
    comparison with Bunsen-type flames, Combust. Flame 172 (2016) 173-182.
    [25] D. Bradley, P.H. Gaskell, X.J. Gu, Burning velocities, Markstein lengths, and flame
    quenching for spherical methane-air flame: a computational study, Combust. Flame
    104 (1996) 176-198.
    [26] G. Tian, R. Daniel, H. Li, H. Xu, S. Shuai, P. Richards, Laminar burning velocities
    of 2,5-dimethylfuran compared with ethanol and gasoline, Energy Fuels 24 (2010)
    3898-3905.
    [27] D. Bradley, R.A. Hick, M. Lawes, C.G.W. Sheppard, R. Woolley, The measurement
    of laminar burning velocities and Markstein numbers for iso-octane–air and iso-octane–
    n-heptane–air mixtures at elevated temperatures and pressures in an explosion bomb,
    Combust. Flame 115 (1998) 126-144.
    [28] D. Bradley, T.M. Cresswell, J.S. Puttock, Flame acceleration due to flame-induced
    instabilities in large-scale explosions, Combust. Flame 124 (2001) 551-559.
    [29] M. Metghalchi, J.C. Keck, Burning velocity of mixtures of air with methanol,
    isooctane, and indolene at high pressure and temperature, Combust. Flame 48 (1982)
    191-210.
    [30] A.S. Huzayyin, H.A. Moneib, M.S. Shehatta, A.M.A. Attia, Laminar burning velocity
    and explosion index of LPG–air and propane–air mixtures, Fuel 87 (2008) 39-57.
    [31] Z. Chen, M.P. Burke, Y. Ju, Effects of Lewis number and ignition energy on the
    determination of laminar flame speed using propagating spherical flames, Proc.
    Combust. Inst. 32 (2009) 1253-1260.
    [32] M.P. Burke, Z. Chen, Y. Ju, F.L. Dryer, Effect of cylindrical confinement on the
    determination of laminar flame speeds using outwardly propagating flames, Combust.
    Flame 156 (2009) 771-779.
    [33] A.P. Kelley, C.K. Law, Nonlinear effects in the extraction of laminar flame speeds from
    expanding spherical flames, Combust. Flame 156 (2009) 1844-1851.
    [34] SC, Taylor, Burning velocity and the influence of flame stretch, PhD thesis, University
    of Leeds, 1991. (http://etheses.whiterose.ac.uk/2099/)
    [35] G.E. Andrews, D. Bradley, Determination of burning velocities: a critical review,
    Combust. Flame 18 (1972) 133-153.
    [36] C.K. Law, C.J. Sung, H. Wang, T.F. Lu, Development of comprehensive detailed and
    reduced reaction mechanisms for combustion modeling, AIAA J. 41 (2003) 1629-1646.72
    [37] C.K. Wu, C.K. Law, On the determination of laminar flame speeds from stretched
    flames, Symp. (Int.) Combust. 20 (1984) 1941-1949.
    [38] C.K. Law, C.J. Sung, Structure, aerodynamics, and geometry of premixed flamelets,
    Prog. Energy Combust. Sci. 26 (2000) 459-505.
    [39] M. Matalon, On flame stretch, Combust. Sci. Technol. 31 (1983) 169-181.
    [40] 林彥廷, 高溫高壓汽油主要參考燃料層流和紊流燃燒速度量測與正規化分析,
    國立中央大學機械工程研究所, 碩士論文 (2019).
    [41] D.L. Zhu, F.N. Egolfopoulos, C.K. Law, Experimental and numerical determination of
    laminar flame speed of methane/ (Ar; N2; CO2)-air mixtures as function of
    stoichiometry, pressure, and flame temperature, Symp. (Int.) Combust. 22 (1988) 1537-
    1545.
    [42] D.R. Dowdy, D.B. Smith, S.C. Taylor, A. Williams, The use of expanding spherical
    flames to determine burning velocities and stretch effects in hydrogen/air mixtures,
    Symp. (Int.) Combust. 23 (1990) 325-332.
    [43] G. Rozenchan, D.L. Zhu, C.K. Law, S.D. Tse, Outward propagation, burning velocities,
    and chemical effects of methane flames up to 60 atm, Proc. Combust. Inst. 29 (2002)
    1461-1469.
    [44] A.P. Kelley, C.K. Law, Nonlinear effects in the experimental determination of laminar
    flame properties from stretched flames, Chemical and physical processes in combustion
    in Eastern states section of the combustion institute fall meeting (2007) 296-304.
    [45] A.P. Kelley, G. Jomaas, C.K. Law, On the critical radius for sustained propagation of
    spark-ignited spherical flames, 46th AIAA Aerospace Sciences Meeting and Exhibit
    (2008), Paper No. 1054.
    [46] A.P. Kelley, G. Jomaas, C.K. Law, Critical radius for sustained propagation of sparkignited spherical flames, Combust. Flame 156 (2009) 1006-1013.
    [47] Z. Chen, On the accuracy of laminar flame speeds measured from outwardly
    propagating spherical flames: Methane/air at normal temperature and pressure,
    Combust. Flame 162 (2015) 2442-2453.
    [48] A.N. Lipatnikov, W.Y. Li, L.J. Jiang, S.S. Shy, Does Density Ratio Significantly
    Affect Turbulent Flame Speed?, Flow, Turbul. Combust. 98 (2017) 1153-1172.
    [49] D. Bradley, M.Z. Haq, R.A. Hicks, T. Kitagawa, M. Lawes, C.G.W. Sheppard, R.
    Woolley, Turbulent burning velocity, burned gas distribution, and associated flame
    surface definition, Combust. Flame 133 (2003) 415-430.73
    [50] H.J. Kim, K. Van, D.K. Lee, C.S. Yoo, J. Park, S.H. Chung, Laminar flame speed,
    Markstein length, and cellular instability for spherically propagating methane/ethylene–
    air premixed flames, Combust. Flame 214 (2020) 464-474.
    [51] P. Clavin, Dynamic Behavior of Premixed Flame Fronts in Laminar and Turbulent
    Flows, Prog. Energy Combust. Sci. 11 (1985) 1-59.
    [52] S.Y. Liao, D.M. Jiang, Z.H. Huang, K. Zeng, Q. Cheng, Determination of the laminar
    burning velocities for mixtures of ethanol and air at elevated temperatures, Appl. Therm.
    Eng. 27 (2007) 374-380.
    [53] Moghaddas A, Bennett C, Eisazadeh-Far K, Metghalchi H. Measurement of laminar
    burning speeds and determination of onset of auto-ignition of jet-a/air and jet propellant-
    8/air mixtures in a constant volume spherical, Chamber, J. Energy Resour. Technol. 134
    (2012) 022205 (1-6).
    [54] Beeckmann J, Röhl O, Peters N. Experimental and numerical investigation of isooctane, methanol and ethanol regarding laminar burning velocity at elevated pressure
    and temperature, SAE Tech. Pap. Ser. 1774 (2009) 1-9.
    [55] Farrell J, Johnston R, Androulakis I. Molecular structure effects on laminar burning
    velocities at elevated temperature and pressure, SAE Tech. Pap. Ser. 1895 (2004) 1-22
    [56] I. Glassman, R.A. Yetter, Combustion 3th ed., Academic Press, London, U.K., 2008
    p.43.
    [57] C.K. Law, Combustion Physics, Cambridge University Press, Cambridge, U.K., 2006
    p.275.
    [58] L. Sileghem, V.A. Alekseev, J. Vancoillie, K.M. Van Geem, E.J.K. Nilsson, S.
    Verhelst, A.A. Konnov, Laminar burning velocity of gasoline and the gasoline
    surrogate components iso-octane, n-heptane and toluene, Fuel 112 (2013) 355-365.
    [59] G. Tian, R. Daniel, H. Li, H. Xu, S. Shuai, P. Richards, Laminar Burning Velocities
    of 2,5-Dimethylfuran Compared with Ethanol and Gasoline, Energy Fuels 24 (2010)
    3898-3905.
    [60] M. Metghalchi, J.C. Keck, Burning velocity of mixtures of air with methanol,
    isooctane, and indolene at high pressure and temperature, Combust. Flame 48 (1982)
    191-210.
    [61] S. Zhang, T.H. Lee, H. Wu, J. Pei, WeiWu, F. Liu, C. Zhang, Experimental and kinetic
    studies on laminar flame characteristics of acetone-butanol-ethanol (ABE) and toluene
    reference fuel (TRF) blends at atmospheric pressure, Fuel 232 (2018) 755-768.74
    [62] B. Rotavera, M. Krejci, A. Vissotski, E.L. Petersen, Laminar flame speed
    measurements of methyl octanoate, n-nonane, and methylcyclohexane, 51st AIAA
    Aerospace Sciences Meeting including the New Horizons Forum and Aerospace
    Exposition (2013), Paper No. 1166.
    [63] X. Zhang, C. Tang, H. Yu, Q. Li, J. Gong, Z. Huang, Laminar flame characteristics
    of iso-octane/n-butanol blend–air mixtures at elevated temperatures, Energy Fuels 27
    (2013) 2327-2335.
    [64] S.G. Davis, H. Wang, K. Breinsky, C.K. Law, Laminar flame speeds and oxidation
    kinetics of benene-air and toluene-air flames, Symp. (Int.) Combust. 26 (1996) 1025-
    1033.
    [65] K. Kumar, C.J. Sung, Flame propagation and extinction characteristics of neat
    surrogate fuel components, Energy Fuels 7 (2010) 3840-3849.
    [66] l.Y.Huang, C.J.Sung, J.A.Eng, Laminar flame speeds of primary reference fuels and
    reformer gas mixtures, Combust. Flame 139 (2004) 239-251.
    [67] S.M. Sarathy, A. Farooq, G.T. Kalghatgi, Recent progress in gasoline surrogate fuels,
    Prog. Energy Combust. Sci. 65 (2017) 1-42.
    [68] Dagaut P, Togbé C. Experimental and modeling study of the kinetics of oxidation of
    ethanol gasoline surrogate mixtures (E85 surrogate) in a jet stirred reactor. Energy Fuels
    22 (2008) 3499-3505.
    [69] A. Frassoldati, A. Cuoci, T. Faravelli, E. Ranzi, Kinetic modeling of the oxidation of
    ethanol and gasoline surrogate mixtures, Combust. Sci. Technol. 182 (2010) 653-667.
    [70] D. Bradley, M. Lawes, M.S. Mansour, Explosion bomb measurements of ethanol–air
    laminar gaseous flame characteristics at pressures up to 1.4MPa, Combust. Flame 156
    (2009) 1462-1470.
    [71] C.C. Liu, Detailed influences of ethanol as fuel additive on combustion chemistry of
    premixed fuel-rich ethylene flames, Sci. China: Technol. Sci. 58 (2015) 1696-1704.
    [72] E. Singh, E.-A. Tingas, D. Goussis, H.G. Im, S.M. Sarathy, Chemical ignition
    characteristics of ethanol blending with primary reference fuels, Energy Fuels 33 (2019)
    10185-10196.
    [73] J.A. Piehl, A. Zyada, L. Bravo, O. Samimi-Abianeh, Review of oxidation of gasoline
    surrogates and its components, J. Combust. 2018 (2018) 1-27.
    [74] C.C. Liu, Detailed influences of ethanol as fuel additive on combustion chemistry of
    premixed fuel-rich ethylene flames, Sci. China: Technol. Sci. 58 (2015) 1696-1704.75
    [75] O.L. Gulder, Burning velocities of ethanol-isooctane blends, Combust. Flame 56 (1984)
    261-268.
    [76] K.C. Salooja, The role of aldehydes in combustion: Studies of the combustion
    characteristics of aldehydes and of their influence on hydrocarbon combustion
    processes, Combust. Flame 9 (1965) 373-382.
    [77] S.M. Sarathy, P. Oßwald, N. Hansen, K. Kohse-Höinghaus, Alcohol combustion
    chemistry, Prog. Energy Combust. Sci. 44 (2014) 40-102.
    [78] B.M. Masum, H.H. Masjuki, M.A. Kalam, I.M. Rizwanul Fattah, S.M. Palash, M.J.
    Abedin, Effect of ethanol–gasoline blend on NOx emission in SI engine, Renewable
    Sustainable Energy Rev. 24 (2013) 209-222.
    [79] R. Stone, Introduction to internal combustion engines 4th edition, Palgrave Macmillan,
    U.K., 2012. p. 69.
    [80] D. Lapalme, F. Halter, C. Mounaïm-Rousselle, P. Seers, Characterization of
    thermodiffusive and hydrodynamic mechanisms on the cellular instability of syngas fuel
    blended with CH4 or CO2, Combust. Flame 193 (2018) 481-490.
    [81] M. Canakci, A.N. Ozsezen, E. Alptekin, M. Eyidogan, Impact of alcohol–gasoline fuel
    blends on the exhaust emission of an SI engine, Renewable Energy 52 (2013) 111-117.
    [82] M. Koç, Y. Sekmen, T. Topgül, H.S. Yücesu, The effects of ethanol–unleaded gasoline
    blends on engine performance and exhaust emissions in a spark-ignition engine,
    Renewable Energy 34 (2009) 2101-2106.
    [83] Y. Zhuang, G. Hong, Primary investigation to leveraging effect of using ethanol fuel on
    reducing gasoline fuel consumption, Fuel 105 (2013) 425-431.
    [84] J.R. Tavares, M.S. Sthel, L.S. Campos, M.V. Rocha, G.R. Lima, M.G. da Silva, H.
    Vargas, Evaluation of pollutant gases emitted by ethanol and gasoline powered vehicles,
    Procedia Environ. Sci. 4 (2011) 51-60.
    [85] S. Rajan, Water-ethanol-gasoline blends-physical properties, power, and pollution
    characteristics, J. Eng. Gas Turbines Power 106 (1984) 841.
    [86] A.K.S. R. W. Rice, A. C. Elrod, R. M. Bata, Exhaust gas emissions of butanol, ethanol,
    and methanol-gasoline blends, J. Eng. Gas Turbines Power 113 (1991) 377.
    [87] S. R. Turns, An introduction to combustion concepts and applications. 3rd edition,
    McGraw-Hill, New York, 2000, p. 21.
    [88] G. Damköhler. 1940 The effect of turbulence on the flame velocity in gas mixtures. Z.
    Elektrochem 46 (1947) 601-652. (English transl. NACA Tech. Mem. 1112 (1947).76
    [89] N. Peters, Laminar flamelet concepts in turbulent combustion, Proc. Combust. Inst. 21
    (1986) 1231-1250.
    [90] K.K. Kuo, R. Acharya, Fundamentals of turbulent and multiphase combustion, John
    Wiley& Sons, Hobken, New Jersey, 2012, p.311.
    [91] 黃信閔, 預混紊流球狀火焰速率與自我相似傳播之量測分析, 國立中央大學機
    械工程研究所, 碩士論文 (2013).
    [92] D. Dasgupta, W. Sun, M. Day, T. Lieuwen, Effect of turbulence–chemistry interactions
    on chemical pathways for turbulent hydrogen–air premixed flames, Combust. Flame
    176 (2017) 191-201.
    [93] S. Chaudhuri, F. Wu, D. Zhu, C.K. Law, Flame speed and self-similar propagation of
    expanding turbulent premixed flames, Phys. Rev. Lett. 108 (2012) 044503 (1-5).
    [94] S. Chaudhuri, F. Wu, C.K. Law, Scaling of turbulent flame speed for expanding flames
    with Markstein diffusion considerations, Phys. Rev. E 88 (2013) 033005 (1-13).
    [95] P.D. Ronney, in: J.D. Buckmaster, T. Takeno (Eds.), Modeling in Combustion Science,
    Lecture Notes in Physics, vol. 449, Springer-Verlag, Berlin, 1995, pp. 3-20.
    [96] T. Kitagawa, T. Nakahara, K. Maruyama, K. Kado, A. Hayakawa, S. Kobayashi,
    Turbulent burning velocity of hydrogen–air premixed propagating flames at elevated
    pressures, Int. J.Hydrogen Energy 33 (2008) 5842-5849.
    [97] Muppala SPR, Nakahara M, Aluri NK, Kido H, Wen JX, Papalexandris MV.
    Experimental and analytical investigation of the turbulent burning velocity of twocomponent fuel mixtures of hydrogen, methane and propane, Int. J.Hydrogen Energy
    34 (2009) 9258-9265.
    [98] D. Lapalme, R. Lemaire, P. Seers, Assessment of the method for calculating the Lewis
    number of H2/CO/CH4 mixtures and comparison with experimental results, Int. J.
    Hydrogen Energy 42 (2017) 8314-8328.
    [99] Bonhomme A, Selle L, Poinsot T. Curvature and confinement effects for flame speed
    measurements in laminar spherical and cylindrical flames, Combust. Flame 160 (2013)
    1208-1214.
    [100] Kwon OC, Rozenchan G, Law CK. Cellular instabilities and self-acceleration of
    outwardly propagating spherical flames, Proc. Combust. Inst. 29 (2002) 1775-1783.
    [101] Bouvet N, Halter F, Chauveau C, Yoon Y. On the effective Lewis number formulations
    for lean hydrogen/hydrocarbon/ air mixtures, Int. J. Hydrogen Energy 38 (2013) 5949-
    5960.77
    [102] D. Dasgupta, W. Sun, M. Day, A.J. Aspden, T. Lieuwen, Analysis of chemical
    pathways and flame structure for n-dodecane/air turbulent premixed flames, Combust.
    Flame 207 (2019) 36-50.

    QR CODE
    :::