| 研究生: |
吳昱瑩 Yu-Ying Wu |
|---|---|
| 論文名稱: | On the Existence of the Stem Entropy on Markov-Cayley tree |
| 指導教授: |
許正雄
Cheng-Hsiung Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 33 |
| 中文關鍵詞: | 符號動態空間 、拓樸熵 、莖熵 |
| 外文關鍵詞: | shift spaces, topological entropy, stem entropy |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文當中,我們定義馬可夫-凱利樹在其分支的熵,並證明其極限
之存在性。
In this thesis, we define the stem entropy, as well as prove that the stem entropy of a Markov-Cayley tree shift exists in limit.
[1]Hadamard, Les surfaces à courbures opposées et leurs lignes géodésiques. Journal de Mathématiques Pures et Appliquées, Vol 4, 27-74, 1898.
[2]D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, 1995.
[3]N. Aubrun and M. P. Béal, Decidability of Conjugacy of Tree-Shifts of Finite Type. Lecture Notes in Computer Science, Vol 5555, 132-143, 2009.
[4]K. Petersen and I. Salama, Tree shift topological entropy. Theoretical Computer Science, Vol 743, 64-71, 2018.
[5]K. Petersen and I. Salama, Entropy on regular trees, Discret. Contin. Dyn. Syst. Ser. A 40 (2020), no. 7, 4453–4477.
[6]Y. Shen, S. Tan, A. Sordoni and A. Courville, Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks. In International Conference on Learning Representations, 2019.
[7]J.-C. Ban and C.-H. Chang, Tree-shifts: the entropy of tree-shifts of finite type. Nonlinearity, 2785-2804, 2017.
[8] J.-C. Ban and C.-H. Chang,Complexity of neural networks on Fibonacci-Cayley tree. Journal of Algebra Combinatorics, 105-122, 2019.
[9]J.-C. Ban, C.-H. Chang, Y.-Y. Wu, and Y.-L. Wu, Stem and Topological Entropy on Cayley Trees. Manuscript submitted for publication.