跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃世敏
Shih-min Huang
論文名稱: 非極性式水性聚胺基甲酸酯-脲酯之合成、結構與物性
Synthesis, structure and physical properties of non-polar waterborne poly(urethane-urea)s
指導教授: 陳登科
Teng-ko Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 281
中文關鍵詞: 相分離分散型態水性聚胺基甲酸酯-脲酯羥基聚丁二烯
外文關鍵詞: Hydroxyl-terminated polybutadiene; Waterborne po
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在環保意識抬頭的驅使下,工業與學術界開始朝向水性高分子來發展,當中受到矚目的水性樹脂之一,即水性聚胺基甲酸酯-脲酯(waterborne polyurethane-ureas,WPUUs)。雖到目前為止對其物性已有ㄧ定程度的了解,但物性與結構、型態間的關係卻尚未確立,甚至連真實的結構、型態究竟為何都還沒有被清楚地窺探過。這是因為一般以極性polyol所合成的WPUUs (極性式WPUUs) 其軟、硬質段間存在著氫鍵作用力,以致無法達到完全的相分離而複雜了結構與物性間的關係。反觀若以非極性式polyol來合成WPUUs (非極性式WPUUs),便可排除軟、硬質段間氫鍵的影響,預期能夠達到近乎完全的相分離,而有助於了解並釐清結構與物性間的關係。
    本研究為了能完整的探討,於是自行合成出700、2050與3400等不同分子量之非極性且可染色的HTPB為polyol,而選用的diisocyanates有H12MDI、HDI與IPDI等三種,離子基為DMPA,中和劑(neutralizer)有TEA、TPA與NaOH等三種,以及EDA作為鏈延長劑(chain extender),進行搭配組合製作出包含不同軟質段分子量、離子基與硬質段含量等眾多的WPUU樣品來。從合成、分散液性質、造膜與熱裂解,以及WAXD、TEM、FTIR、DSC、DMA與Tensile等方面進行測試,針對結構與物性做一嚴謹的研究。
    眾多的證據均清楚地指出WPUUs的型態是由節點(nodes)與分支(cords)所組成的連續網狀結構,尺寸僅~ 2 nm寬,明顯不同於過去文獻所認為WPUUs是偏向於離子體(Ionomers)具有離子團簇聚集的型態;而所謂的離子團簇,像是分散且不連續的multiplets與clusters等微域。此一確實存在的連續網狀結構足以完整地說明為何非極性式HTPB-based WPUUs能表現出比非極性式HTPB-based PUs優異許多的機械性質,甚至不輸於傳統極性式PUs;以及能製作出硬質段含量(可達70 wt%)高於傳統PUs而不會脆裂的特殊性質來。


    Waterborne poly(urethane-urea)s, WPUUs, based on nonpolar hydroxyl-terminated polybutadiene (HTPB) as the soft segment were successfully synthesized. The influences of the COOH group content and soft-segment molecular weight (Mns) on the dispersion, morphology, tensile and pyrolysis properties were investigated. The variations of the particle size and viscosity with increasing the COOH group content and decreasing the Mns were predominated by the hydrophilicity of the polymer chain first and then by the effect of the water swelling. The measurements of Fourier transfer infrared (FT-IR) and differential scanning calorimetry (DSC) indicated that the phase-separation degree decreased as the COOH group content increased and Mns decreased. It was worthy to note that the hydrogen bonding and phase mixing between the soft and hard segments in this study could not be occurred. Therefore, it implied that the hard segments tended to form the looser packing and smaller domains in the soft phases. In this case, the increases of the interface area and contact opportunity between the soft and hard segments resulted in the present behaviors resembled the phase mixing. Besides, HTPB-based WPUUs exhibited the higher tensile stress, the elongation at break and modulus with decreasing the COOH group content and Mns. In thermal degradation, the introduction of HTPB polyol improved the thermal stability.

    目錄 中文摘要……………………………………………………….page.i 英文摘要……………………………………………………….page.iii 第一章 文獻回顧……………………………………………….page.1 1.1水性聚胺基甲酸酯之合成、相轉換與分散液性質……….page.3 1.1.1主要製程………………………………………………page.4 (A) Acetone Process………………………………………page.4 (B) Prepolymer Mixing Process…………………….……page.4 (C) Hot-Melt Process…………………………………..…page.5 (D) Ketimine & Ketazine process……………………...…page.5 1.1.2 組成單體………………………………………...……page.6 (A) Polyol…………………………………………………page.6 (B) 二異氰酸鹽………………………………………..…page.7 (C) 親水性單體………………………………………..…page.8 (D) 鏈延長劑……………………………………………..page.9 1.1.3 相轉移機制………………………………………..…..page.9 1.1.4 分散液性質………………………………………..…..page.11 (A) 穩定機制的種類…………………………………..…page.12 (1) 離子型………………………………………………page.12 (2) 非離子型……………………………………………page.12 (3) 離子/非離子型……………………………………page.12 (B) 粒徑大小、分布與分散液黏度……………………page.13 (1) polyol的分子量與種類………………………...…page.13 (2) diisocyanate的含量與種類………………….……page.14 (3) 離子基/中和劑的含量與種類………………....…page.16 (4) 親水性單體的導入…………………….…………page.17 1.2 形態介紹………………………………………………...…page.18 1.2.1 Ionomer之微域形態…………………………………page.19 1.2.2 Segmented PU之微域形態…………………..………page.29 (A) 軟質段的種類……………………………………..…page.29 (B) 二異氫酸鹽的種類………………………………..…page.30 1.2.3 Waterborne PU / PU ionomer之微域形態………….page.32 1.3 WPUU/PUI之相分離程度與物性…………………………page.35 1.3.1 熱性質(DSC) …………………………………………page.36 (A) 軟質相的熱轉變行為…………………………………page.36 (1) 有/無中和與中和度…………………………………page.37 (2) 離子基含量與中和劑種類…………………….……page.38 (3) 軟質段的種類………………………………………page.40 (B) 硬質相的熱轉變行為……………………………...…page.41 1.3.2 動態機械分析(DMA) …………………………………page.43 (A) 中和度…………………………………………………page.43 (B) 離子基含量與中和劑種類……………………………page.44 (C) 軟質段的種類…………………………………………page.45 (D) 硬質段的種類與含量…………………………………page.45 1.3.3 Stress-strain性質…………………………………………page.47 (A) 中和度…………………………………………………page.49 (B) 離子基含量與中和劑種類……………………………page.49 (C) 軟質段的種類…………………………………………page.51 (D) 硬質段的種類與含量…………………………………page.52 1.4 參考文獻………………………………………………….…page.54 第二章 實驗…….……………………….………………………page.81 2.1 化學藥品…….……………………….………………………page.81 2.2 測試儀器與操作條件……………….………………….……page.83 2.3 合成與鑑定………………………….………………….……page.86 2.3.1 HTPB polyol…………………….……………..….……page.86 2.3.2 HTPB-based WPUU…………….……………..….……page.89 2.4 參考文獻…………………………….……..………..….……page.90 第三章 不同軟質段分子量、離子基與硬質段含量對HTPB-based WPUU的影響: Part (I) 合成、分散液與熱裂解性質….…..page.94 3.1 合成………………………………………………………..page.94 (A) 無溶劑聚合………………………………………..…page.95 (B) 溶液聚合…………………………………………..…page.95 3.2 分散液性質…………………………………………..…….page.98 (A)不同軟質段分子量與酸基含量……………………….page.98 (B)不同軟質段分子量與硬質段含量……………………page.101 3.3 WPUU造膜情況……………………………………..…….page.102 3.4 吸水性………………………………………………..…….page.103 3.5 熱裂解性質…………………………………………..…….page.103 (A)不同軟質段分子量與酸基含量……………………….page.104 (B)不同軟質段分子量與硬質段含量…………………….page.106 3.6 參考文獻……………………………………………..…….page.107 第四章 不同軟質段分子量、離子基與硬質段含量對HTPB-based WPUU的影響: Part (II) 型態與物性…………………..…….page.120 4.1 WAXD………………………………………………..…….page.123 (A)不同軟質段分子量與酸基含量………………..….….page.123 (B)不同軟質段分子量與硬質段含量…………………….page.123 4.2 TEM………………………………………………..……….page.123 (A)不同軟質段分子量與酸基含量………………..……...page.124 (B)不同軟質段分子量與硬質段含量……………..……...page.125 4.3 FTIR………………………………………………..……….page.126 (A)不同軟質段分子量與酸基含量………………..………page.128 (a) NH region…………………………………....……….page.129 (b) Amide I region……………………………....……….page.131 (B)不同軟質段分子量與硬質段含量…………....…….….page.132 (a) NH region…………………………………....……….page.133 (b) Amide I region……………………………....……….page.133 4.4 DSC……………………………………..…………..……….page.135 (A)不同軟質段分子量與酸基含量…..…………..…….….page.135 (B)不同軟質段分子量與硬質段含量.…………..…….…..page.137 4.5 DMA…………………………………....…………..……….page.138 (A)不同軟質段分子量與酸基含量....…………..…...…….page.138 (B)不同軟質段分子量與硬質段含量…………..…...…….page.140 4.6 Tensile………………………………....…………..………...page.141 (A)不同軟質段分子量與酸基含量…..…………..……….page.141 (B)不同軟質段分子量與硬質段含量…………..…….......page.143 4.7 參考文獻……………………………....…………..…….….page.143 第五章 不同二異氰酸鹽與中和劑種類,以及硬質段含量對HTPB- based WPUU的影響: Part (I) 合成、分散液與熱裂解性質…page.179 5.1 合成………………………………....…………..……….….page.179 (A)二異氰酸鹽與硬質段含量變化……………..……...….page.180 (B)中和劑與硬質段含量變化…………………..……...….page.181 5.2 分散液性質……. …………………....…………..……...….page.182 (A)二異氰酸鹽與硬質段含量變化...…………..……...…..page.183 (B)中和劑與硬質段含量變化……..…………..……....…..page.184 5.3 WPUU造膜情況……………………....………………...….page.185 5.4 吸水性…….……………………....…………...………...….page.187 5.5 熱裂解性質……………………....…………...………...…..page.188 (A)二異氰酸鹽與硬質段含量變化………...…..……...…..page.188 (B)中和劑與硬質段含量變化……………...…..……...…..page.190 5.6 參考文獻………………………....…………...………...…..page.192 第六章 不同二異氰酸鹽與中和劑種類,以及硬質段含量對HTPB- based WPUU的影響: Part (II) 型態與物性…………...…….page.204 6.1 WAXD……………………………………………………….page.204 (A)二異氰酸鹽與硬質段含量變化…………………….….page.204 (B)中和劑與硬質段含量變化……………………………..page.205 6.2 TEM………………………………………………………....page.206 (A)二異氰酸鹽與硬質段含量變化…………………….….page.206 (B)中和劑與硬質段含量變化……………………………..page.209 6.3 FTIR………………………………………………………....page.211 (A)二異氰酸鹽與硬質段含量變化………………………..page.211 (a) NH region…………………………………………….page.213 (b) Amide I region……………………………………….page.215 (B)中和劑與硬質段含量變化…………………………….page.216 (a) NH region…………………………………………….page.219 (b) Amide I region……………………………………….page.220 6.4 DSC……………………………………...……………….….page.222 (A)二異氰酸鹽與硬質段含量變化…………………….….page.223 (B)中和劑與硬質段含量變化………………………….….page.227 6.5 DMA……………………………………………………...….page.228 (A)二異氰酸鹽與硬質段含量變化……………………….page.226 (B)中和劑與硬質段含量變化…………………………….page.229 6.6 Tensile……………………………………………………….page.232 (A)二異氰酸鹽與硬質段含量變化……………………….page.232 (B)中和劑與硬質段含量變化…………………………….page.234 6.7 參考文獻…………………………………...……………….page.236 第七章 結論…………………………………………………….page.276 圖目錄 Fig.1-1 Typical ionic monomers……………………………….page.63 Fig.1-2 Acetone Process……………………………………….page.64 Fig.1-3 Prepolymer Mixing Process…………………………...page.65 Fig.1-4 Hot-Melt Process………………………………...…….page.66 Fig.1-5 Ketimine & Ketazine process…………………...….….page.67 Fig.1-6(a)~(c) Phase Inversion Mechanism……………...…….page.68 Fig.1-6(e)~(f) Phase Inversion Mechanism……………...…….page.69 Fig.1-7 Core-shell model (top) and corresponding electron density profile (bottom).………………………….……………………...….….page.70 Fig.1-8 Depleted-zone core-shell model (top) and corresponding electron density profile (bottom). ………….…………………….......….page.71 Fig.1-9 Liquid-like model (top) and corresponding electron density profile (bottom) for a single ionic aggregate.……………......….page.72 Fig.1-10……………………….…………………….........….….page.73 Figure 2-1 The synthetic route of HTPB………….........…....….page.94 Figure 2-2 FTIR spectra of cis-PB and HTPB…….........…....….page.95 Fig. 3-1 The (a) particle size, (b) viscosity and (c) zeta potential of dispersions respectively as a function of COOH content with HTPB molecular weight…………………………………….........…….page.112 Fig. 3-2 The (a) particle size, (b) viscosity and (c) zeta potential of dispersions respectively as a function of hard segment content with HTPB molecular weight. …………………………………….......…….page.113 Fig. 3-3 Water swelling of WPUU films as a function of (a) varied COOH content with HTPB molecular weight; of (b) varied hard segment content with HTPB molecular weight……………………….......…..….page.114 Fig. 3-4 The thermal degradation mechanisms of urethane linkage ……. ……….……………………………………………….......…….page.115 Fig. 3-5 TGA curves of (a) 700-54-zz, (b) 2050-54-zz and (c) 3400-54-zz series. …………………………………………………......…….page.116 Fig. 3-6 DTG curves of (a) 700-54-zz, (b) 2050-54-zz and (c) 3400-54-zz series. …………………………………………………......…….page.117 Fig. 3-7 TGA curves of (a) 700-yy-2.0, (b) 2050-yy-2.0 and (c) 3400-yy-2.0 series……………………………………......….….page.119 Fig. 3-8 DTG curves of (a) 700-yy-2.0, (b) 2050-yy-2.0 and (c) 3400-yy-2.0 series. ……………………………………........…..page.120 Fig. 4-1 The WAXD curves of (a) 700-54-zz, (b) 2050-54-zz and (c) 3400-54-zz series ……………………………………........….....page.148 Fig. 4-2 The WAXD curves of (a) 700-yy-2.0, (b) 2050-yy-2.0 and (c) 3400-yy-2.0 series……………………………………........….....page.149 Fig. 4-3 The most possible spacial size (2D) of hard segment.....page.150 Fig. 4-4 The TEM micrographs of (a) 2050-54-1.2, (b) 2050-54-2.0 and (c) 2050-54-3.0………………………………………........….....page.151 Fig. 4-5 The TEM micrographs of (a) 3400-54-1.2, (b) 3400-54-2.0 and (c) 3400-54-3.0………………………………………........….....page.152 Fig.4-6 The TEM micrographs of (a) 2050-44-2.0, (b) 2050-54-2.0 and (c) 2050-70-2.0………………………………………..............….....page.154 Fig.4-7 The TEM micrographs of (a) 3400-44-2.0, (b) 3400-54-2.0 and (c) 3400-70-2.0………………………………………..............….....page.155 Fig.4-8 Four morphological model were proposed for HTPB-based WPUUs………………………………………..…..............….....page.157 Fig.4-9 The typical FTIR spectra of (a) HTPB, (b) DMPA, (c) NaOH-neutralized DMPA, (d) bis-urea model compound and (e) 2050-54-2.0……………………………………..............…….....page.158 Fig.4-10 Whole region FTIR spectra of 700-, 2050- and 3400-54-zz series. ………………………………………..….................….....page.159 Fig.4-11 Local expanded FTIR spectra of 700-, 2050- and 3400-54-zz series. ………………………………………..….................….....page.160 Fig.4-12 2nd order differential FTIR spectra in NH region of 700-, 2050- and 3400-54-zz series………………………..….................….....page.162 Fig.4-13 Ion-dipole bonded N-H……………..…................….....page.163 Fig.4-14 2nd order differential FTIR spectra in Amide I region of 700-, 2050- and 3400-54-zz series………………..….................….......page.164 Fig.4-15 Whole region FTIR spectra of 700-, 2050- and 3400-yy-2.0 series……………………………………..….......................….....page.165 Fig.4-16 Local expanded FTIR spectra of 700-, 2050- and 3400- yy-2.0 series……………………………………..….......................….....page.166 Fig.4-17 2nd order differential FTIR spectra in NH region of 700-, 2050- and 3400-yy-2.0 series…………………..….......................…......page.168 Fig.4-18 2nd order differential FTIR spectra in Amide I region of 700-, 2050- and 3400-yy-2.0 series…………..….......................…........page.169 Fig.4-19 The determinations of Tg and △B.................……….page.170 Fig.4-20 Entire range DSC spectra of 700-, 2050- and 3400-54-zz series. ……………………….……………………....................…..…...page.171 Fig.4-21 Low-temperature range DSC spectra of 700-, 2050- and 3400-54-zz series. …….……………………....................…..….page.172 Fig.4-22 Entire range DSC spectra of 700-, 2050- and 3400-yy-2.0 series. ……………………….……………………....................…..…...page.174 Fig.4-23 Low-temperature range DSC spectra of 700-, 2050- and 3400-yy-2.0 series. ….……………………....................…..…...page.175 Fig.4-24 DMA spectra of 700-, 2050- and 3400-54-zz series. ....page.177 Fig.4-25 DMA spectra of 700-, 2050- and 3400-yy-2.0 series.....page.178 Fig.4-26 The stress-strain curves of 700-, 2050- and 3400-54-zz series ……………………….…………………….....................…..…...page.179 Fig.4-27 The stress-strain curves of 700-, 2050- and 3400-yy-2.0 series. ……………………….…………………….....................…..…...page.181 Fig. 5-1 The (a) particle size, (b) viscosity and (c) zeta potential of dispersions respectively as a function of hard-segment content with diisocyanate. ……….…………………….......................…..…...page.197 Fig. 5-2 The (a) particle size, (b) viscosity and (c) zeta potential of dispersions respectively as a function of hard segment content with neutralized agent….………………...…….......................…..…...page.198 Fig. 5-3 Water swelling of WPUU films based on the different types of diisocyanate and of neutralized agent with hard segment content. ……………………….…………………….....................…..…...page.199 Fig. 5-4 TGA curves of WPUUs based different types of diisocyanate in (a) 40, (b) 55 and (c) 70 wt% hard-segment content. .......…..…..page.200 Fig. 5-5 DTG curves of WPUUs based different types of diisocyanate in (a) 40, (b) 55 and (c) 70 wt% hard-segment content. .......…..…..page.201 Fig. 5-7 TGA curves of WPUUs based different types of neutralized agent and diisocyanate in (a) 40, (b) 55 and (c) 70 wt% hard-segment content. ……………………….…………………….....................…..…...page.203 Fig. 5-8 DTG curves of WPUUs based different types of neutralized agent and diisocyanate in (a) 40, (b) 55 and (c) 70 wt% hard-segment content. ……..……….…………………….....................…..…...page.204 Fig. 6-1 The WAXD curves of different diisocyanates (with the same counterion, TEA) in (a) HC=40, (b) HC=55 and (c) HC=70 series………. ……………………….…………………….....................…..…...page.242 Fig. 6-2 The WAXD curves of different counterions with diisocyanates in (a) HC=40, (b) HC=55 and (c) HC=70 series.................…..…....page.243 Fig. 6-3(cont.) The most possible spacial size (2D) of (a) HDI-based, (b) H12MDI-based and (c) IPDI-based hard segment. .......…..……..page.244 Fig. 6-3(cont.) The most possible spacial size (2D) of (a) HDI-based, (b) H12MDI-based and (c) IPDI-based hard segment. .......…..……..page.245 Fig. 6-4 The TEM micrographs of WPUUs based on (a) HDI, (b) H12MDI and (c) IPDI with TEA neutralized agent in 40 wt% hard-segment content. …………………….....................…...…...page.246 Fig. 6-5 The TEM micrographs of WPUUs based on (a) HDI, (b) H12MDI and (c) IPDI with TEA neutralized agent in 55 wt% hard-segment content. …………………….....................…...…...page.247 Fig. 6-6 The TEM micrographs of WPUUs based on (a) HDI, (b) H12MDI and (c) IPDI with TEA neutralized agent in 70 wt% hard-segment content. …………………….....................…...…...page.248 Fig. 6-7 The TEM micrographs of HDI-based WPUUs with (a) NaOH, (b) TEA and (c) TPA neutralized agents in 40 wt% hard-segment content. ……………………………………………......................…...…...page.250 Fig. 6-8 The TEM micrographs of HDI-based WPUUs with (a) NaOH, (b) TEA and (c) TPA neutralized agents in 55 wt% hard-segment content. ……………………………………………......................…...…...page.251 Fig. 6-9 The TEM micrographs of HDI-based WPUUs with (a) NaOH, (b) TEA and (c) TPA neutralized agents in 70 wt% hard-segment content. ……………………………………………......................…...…...page.252 Fig. 6-10 The TEM micrographs of H12MDI-based WPUUs with (a) TEA and (b) TPA neutralized agents in 40 wt% hard-segment content. ……………………………………………......................…...…...page.254 Fig. 6-11 The TEM micrographs of H12MDI-based WPUUs with (a) TEA and (b) TPA neutralized agents in 55 wt% hard-segment content. ……………………………………………......................…...…...page.255 Fig. 6-12 The TEM micrographs of H12MDI-based WPUUs with (a) TEA and (b) TPA neutralized agents in 70 wt% hard-segment content. ……………………………………………......................…...…...page.256 Fig.6-13 Whole region FTIR spectra of WPUUs based on HDI, H12MDI and IPDI with TEA in (a) 40, (b) 55 and (c) 70 wt% hard-segment content (HC). ……………………………………......................…...…...page.258 Fig.6-14 2nd order differential FTIR spectra in N-H region of WPUUs based on HDI, H12MDI and IPDI with TEA in (a) 40, (b) 55 and (c) 70 wt% HC. ………………..………………......................…...…...page.260 Fig.6-15 2nd order differential FTIR spectra in C=O region of WPUUs based on HDI, H12MDI and IPDI with TEA in (a) 40, (b) 55 and (c) 70 wt% HC. ………………..………………......................…...…...page.261 Fig.6-16 Whole region FTIR spectra of WPUUs based on HDI and H12MDI with the different neutralized agents in (a) 40, (b) 55 and (c) 70 wt% HC. ………………..………………......................…...…...page.262 Fig.6-17 2nd order differential FTIR spectra in N-H region of WPUUs based on HDI and H12MDI with the different neutralized agents in (a) 40, (b) 55 and (c) 70 wt% HC. ………………......................…........page.264 Fig.6-18 2nd order differential FTIR spectra in C=O region of WPUUs based on HDI and H12MDI with the different neutralized agents in (a) 40, (b) 55 and (c) 70 wt% HC. …………….......................……...…..page.265 Fig.6-19 Entire range DSC spectra of WPUUs based on HDI, H12MDI and IPDI with TEA in (a) 40, (b) 55 and (c) 70 wt% HC. …..…..page.266 Fig.6-20 Low-temperature range DSC spectra of WPUUs based on HDI, H12MDI and IPDI with TEA in (a) 40, (b) 55 and (c) 70 wt% HC. ……………..................................................................……...…..page.267 Fig.6-21 Entire range DSC spectra of WPUUs based on HDI and H12MDI with the different neutralized agents in (a) 40, (b) 55 and (c) 70 wt% HC. ……………..................................................................……...…..page.269 Fig.6-22 Low-temperature range DSC spectra of WPUUs based on HDI and H12MDI with the different neutralized agents in (a) 40, (b) 55 and (c) 70 wt% HC. ..................................................................……...…..page.270 Fig.6-23 DMA spectra of WPUUs based on HDI, H12MDI and IPDI with TEA in (a) 40, (b) 55 and (c) 70 wt% HC. ......................…….....page.272 Fig.6-24 DMA spectra of WPUUs based on HDI and H12MDI with three different neutralized agents in (a) 40, (b) 55 and (c) 70 wt% HC. ……………..................................................................……...…..page.273 Fig.6-25 The stress-strain curves of WPUUs based on HDI, H12MDI and IPDI with TEA in (a) 40, (b) 55 and (c) 70 wt% HC. ....……......page.274 Fig.6-26 The stress-strain curves of WPUUs based on HDI and H12MDI with three different neutralized agents in (a) 40, (b) 55 and (c) 70 wt% HC. ………..................................................................……...…..page.276 表目錄 Table 3-1 Formulation of HTPB-based Waterborne Polyurethane-ureas (wt%)……………………….……………………...........….….page.111 Table 3-2 The onset temperature and weight loss of HTPB-based WPUU with the varied COOH group content and soft-segment molecular weight. ……………………….……………………....................…..….page.118 Table 3-3 The onset temperature and weight loss of HTPB-based WPUU with the varied hard segment content and soft-segment molecular weight. ……………………….……………………...................……….page.121 Table 4-1 The measured sizes of node and cord in TEM micrographs of 2050-54-zz and 3400-54-zz series…………...................…...….page.153 Table 4-2 The measured sizes of node and cord in TEM micrographs of 2050-yy-2.0 and 3400-yy-2.0 series………...................……….page.156 Table 4-3 The Characteristic Absorptions of xxxx-54-zz series WPUUs ……………………….……………………...................……….page.161 Table 4-4 The Characteristic Absorptions of xxxx-yy-2.0 series WPUUs ……………………….……………………...................……….page.167 Table 4-5 The Glass Transition Behaviors of HTPB Polyols and 700-, 2050- and 3400-54-zz series………………...................……….page.173 Table 4-6 The Glass Transition Behaviors of HTPB Polyols and 700-, 2050- and 3400-yy-2.0 series……………......................……….page.176 Table 4-7 Tensile Properties of 700-, 2050- and 3400-54-zz series ……………………….……………………...................………..page.180 Table 4-8 Tensile Properties of 700-, 2050- and 3400-yy-2.0 series ……………………….……………………...................………..page.182 Table 5-1 Formulation of HTPB-based Waterborne Polyurethane-ureas (wt%)……………….…………………….....................………..page.196 Table 5-2 The onset temperature and weight loss of HTPB-based WPUU with the different types of diisocyanate and hard segment content. ……………………….……………………...................………..page.202 Table 5-3 The onset temperature and weight loss of HTPB-based WPUU with the different types of neutralized agent and hard segment content. ……………………….……………………...................………..page.205 Table 6-1 The measured sizes of node and cord in TEM micrographs of WPUUs based on HDI, H12MDI and IPDI with TEA in the different hard-segment content……………………......................………..page.249 Table 6-2 The measured sizes of node and cord in TEM micrographs of WPUUs based on HDI with different neutralized agents and hard-segment contents……………………......................………..page.253 Table 6-3 The measured sizes of node and cord in TEM micrographs of WPUUs based on H12MDI with the different neutralized agents and hard-segment contents……………………......................………..page.257 Table 6-4 The Characteristic Absorptions of WPUUs based on HDI, H12MDI and IPDI with TEA…………….......................………..page.259 Table 6-5 The Characteristic Absorptions of WPUUs based on HDI and H12MDI with the different neutralized agents.................………..page.263 Table 6-6 The Glass Transition Behaviors of WPUUs based on HDI, H12MDI and IPDI with TEA……………......................…….…..page.268 Table 6-7 The Glass Transition Behaviors of WPUUs based on HDI, and H12MDI combining with the different neutralized agents.….page.271 Table 6-8 Tensile Properties of WPUUs based on HDI, H12MDI and IPDI with TEA………………………………….....................…….…..page.275 Table 6-9 Tensile Properties of WPUUs based on HDI and H12MDI with three different neutralized agents………….....................…....…..page.277

    參考文獻
    [1] D. Dieterich, W. Keberle, H. Witt, Angew. Chem. Internal. Edit., 9, 40 (1970).
    [2] D. Dieterich, Prog. Org. Coat., 9, 281 (1981).
    [3] J. W. Rosthauser, K. Nachtkamp, Journal of coated Fabrics, 16, 39 (1986).
    [4] F. M. B. Coutinho, M. C. Delpech, L. S. Alves, J. Appl. Polym. Sci., 80, 566 (2001).
    [5] M. C. Delpech, F. M. B. Coutinho, Polym. Test., 19, 939 (2000).
    [6] M. S. Yen, S. C. Kuo, J. Appl. Polym. Sci., 64, 883 (1997).
    [7] M. S. Yen, S. C. Kuo, J. Appl. Polym. Sci., 67, 1301 (1998).
    [8] M. S. Yen, S. C. Kuo, J. Appl. Polym. Sci., 61, 1639 (1996).
    [9] M. S. Yen, P. Y. Tsai, J. Appl. Polym. Sci., 90, 233 (2003).
    [10] M. S. Yen, P. Y. Chen, H. C. Tsai, J. Appl. Polym. Sci., 90, 2824 (2003).
    [11] F. M. B. Coutinho, M. C. Delpech, M. E. F. Garcia, Polym. Test., 21, 719 (2002).
    [12] T. C. Wen, Y. J. Wang, T. T. Cheng, C. H. Yang, Polymer, 40, 3979 (1999).
    [13] T. C. Wen, S. S. Luo, C. H. Yang, Polymer, 41, 6755 (2000).
    [14] B. K. Kim, J. W. Seo, H. M. Jeong, Eur. Polym. J., 39, 85 (2003).
    [15] C. Z. Yang, T. G. Grasel, J. L. Bell, R. A. Register, S. L. Cooper, J. Polym. Sci., Polym. Phys., 29, 581 (1991).
    [16] C. Z. Yang, C. Li, S. L. Cooper, J. Polym. Sci., Polym. Phys., 29, 75 (1991).
    [17] C. S. Schllenberger, F. D. Stewart, “Advances in Urethane Science and Technology ”, K. C. Frisch, S. L. Reegen, ed., vol. 1, Technomic Publishing Co., Inc., 1971.
    [18] F. M. B. Coutinho, M. C. Delpech, T. L. Alves, A. A. Ferreira, Polym. degradation stab., 81, 19 (2003).
    [19] D. J. Hourston, G. Williams, R. Satguru, J. D. Padget, D. Pears, J. Appl. Polym. Sci., 66, 2035 (1997).
    [20] C. Hepburn, Polyurethane Elastomers, Applied Science Publishers, New York, 1982.
    [21] G.. Oertel, Polyurethane Handbook, Hanser, 2nd ed., New York, 1994.
    [22] S. Y. Lee, J. S. Lee, B. K. Kim, Polymer International, 42, 67 (1997).
    [23] L. Wu, B. You, D. Li, F. Qian, Polym. Int., 49, 1609 (2000).
    [24] Y. S. Ding, R. A. Register, C. Z. Yang, S. L. Cooper, Polymer, 30, 1213 (1989).
    [25] S. A. Visser, S. L. Cooper, Macromolecules, 24, 2584 (1991).
    [26] D. C. Lee, R. A. Register, C. Z. Yang, S. L. Cooper, Macromolecules, 21, 998 (1988).
    [27] R. A. Register, X. H. Yu, S. L. Cooper, Polym. Bull., 22, 565 (1989).
    [28] S. A. Visser, S. L. Cooper, Polymer, 33, 3790 (1992).
    [29] S. A. Visser, S. L. Cooper, Macromolecules, 24, 2576 (1991).
    [30] X. Yu, M. R. Nagarajan, C. Li, P. E. Gibson, S. L. Cooper, J. Polym. Sci., Polym. Phys., 24, 2681 (1986).
    [31] X. H. Yu, M. R. Nagarajan, T. G. Grasel, P. E. Gibson, S. L. Cooper, J. Polym. Sci., Polym. Phys. Ed., 23, 2319 (1985).
    [32] K. Noll et al., U.S. Patent 4,408,008
    [33] O. Lorenz, F. Haulena, D. Kleborn, Angew. Makromol. Chem., 33, 159 (1973).
    [34] O. Lorenz, H. Hick, Angew. Makromol. Chem., 72, 115 (1978).
    [35] J. S. Hsu, S. A. Chen, Polym. Bull., 26, 429 (1991).
    [36] J. S. Hsu, S. A. Chen, Polymer, 34, 2776 (1993).
    [37] W. C. Chan, S. A. Chen, Polymer, 29, 1995 (1988).
    [38] W. C. Chan, S. A. Chen, J. Polym. Sci., Polym. Phys., 28, 1515 (1990).
    [39] R. Satguru, J. McMahon, J.C. Padget, R. G. Coogan, J. Coatings Tech., 66, 47 (1994).
    [40] G. L. Flickinger, I. S. Dairanieh, C. F. Zukoski, J. Non-Newton. Fluid Mech., 87, 283 (1999).
    [41] Y. M. Lee, J. C. Lee, B. K. Kim, Polymer, 35, 1095 (1994).
    [42] B. K. Kim, J. C. Lee, J. Polym. Sci., Polym. Chem., 34, 1095 (1996).
    [43] B. K. Kim, J. C. Lee, K. H. Lee, Pure Appl. Chem., A31(9), 1241 (1994).
    [44] B. K. Kim, Y. M. Lee, J. Appl. Polym. Sci., 54, 1809 (1994).
    [45] C. K. Kim, B. K. Kim, J. Appl. Polym. Sci., 43, 2295 (1991).
    [46] C. K. Kim, B. K. Kim, H. M. Jeong, Colloid Polym. Sci., 269, 895 (1991).
    [47] P. A. Lovell, M. S. El-Aasser, “Emulsion Polymerization and Emulsion Polymers”, John Wiley & Sons, New York, 1997.
    [48] D. Myers, “Surfaces, Interfaces, and Colloids: Principles and Applications”, VCH Publishers, Inc., New York, 1991.
    [49] O. Lorenz, V. Budde, W. Wirtz, Angew. Macromol. Chem., 83, 113 (1979).
    [50] T. K. Kim, B. K. Kim, Colloid Polym. Sci., 269, 889 (1991).
    [51] B. K. Kim, T. K. Kim, J. Appl. Polym. Sci., 43, 393 (1991).
    [52] J. C. Lee, B. K. Kim, J. Polym. Sci., Polym. Chem., 32, 1983 (1994).
    [53] B. K. Kim, C. K. Kim, Pure Appl. Chem., A32(11), 1903 (1995).
    [54] B. K. Kim, Y. M. Lee, Pure Appl. Chem., A29(12), 1207 (1992).
    [55] B. K. Kim, T. K. Kim, H. M. Jeong, J. Appl. Polym. Sci., 53, 371 (1994).
    [56] B. K. Kim, J. C. Lee, Polymer, 37, 469 (1996).
    [57] H. Xiao, H. X. Xiao, K. C. Frisch, N. Malwitz, J. Appl. Polym. Sci., 54, 1643 (1994).
    [58] J. S. Lee, B. K. Kim, Prog. Org. Coat., 25, 311 (1995).
    [59] D. J. Hourston, G. D. Williams, R. Satguru, J. C. Padget, D. Pears, J. Appl. Polym. Sci., 74, 556 (1999).
    [60] Y. Chen, Y. L. Chen, J. Appl. Polym. Sci., 46, 435 (1992).
    [61] M. R. Tant, K. A. Mauritz, G. L. Wilkes, Ionomers: Synthesis, Structure, Properties and Applications, Chapman & Hall: 1997.
    [62] C. H. Wirguin, J. Membr. Sci., 120, 1 (1996).
    [63] E. P. Otocka, D. D. Davis, Macromolecules, 2, 437 (1969).
    [64] E. P. Otocka, T. K. Kwei, Macromolecules, 1, 401 (1968).
    [65] R. Longworth, D. J. Vaughan, Nature (London), 218, 85 (1968).
    [66] A. Eisenberg, Macromolecules, 3, 147 (1970).
    [67] C. L. Marx, D. F. Caulfield, S. L. Cooper, Macromolecules, 6, 344 (1973).
    [68] W. J. MacKnight, W. P. Taggart, R. S. Stein, J. Polym. Sci., Polym. Symp., 45, 113 (1974).
    [69] E. J. Roche, R. S. Stein, T. P. Russell, W. J. MacKnight, J. Polym. Sci., Polym. Phys. Ed., 18, 1497 (1980).
    [70] D. J. Yarusso, S. L. Cooper, Macromolecules, 16, 1871 (1983).
    [71] W. C. Forsman, Macromolecules, 15, 1032 (1982).
    [72] W. C. Forsman, W. J. MacKnight, Macromolecules, 17, 490 (1984).
    [73] B. Dreyfus, Macromolecules, 18, 284 (1985).
    [74] Y. S. Ding, S. R. Hubbard, K. O. Hodgson, R. A. Register, S. L. Cooper, Macromolecules, 21, 1698 (1988).
    [75] A. Eisenberg, B. Hird, R. B. Moore, Macromolecules, 23, 4098 (1990).
    [76] R. B. Moore, D. Bittencourt, M. Gauthier, C. E. Williams, A. Eisenberg, Macromolecules, 24, 1376 (1991).
    [77] P. Vanhooren, R. Jérôme, P. Teyssié, F. Lauprêtre, Macromolecules, 27, 2548 (1994).
    [78] R. S. McLean, M. Doyle, B. B. Sauer, Macromolecules, 33, 6541 (2000).
    [79] B. B. Sauer, R. S. McLean, Macromolecules, 33, 7939 (2000).
    [80] Y. Ikeda, T. Murakami, Y. Yuguchi, K. Kajiwara, Macromolecules, 31, 1246 (1998).
    [81] V. Schädler, V. Kniese, T. T. Albrecht, U. Wiesner, H. W. Spiess, Macromolecules, 31, 4828 (1998).
    [82] J. H. Laurer, K. I. Winey, Macromolecules, 31, 9106 (1998).
    [83] K. I. Winey, J. H. Laurer, B. P. Kirkmeyer, Macromolecules, 33, 507 (2000).
    [84] B. P. Kirkmeyer, A. Taubert, J. S. Kim, K. I. Winey, Macromolecules, 35, 2648 (2002).
    [85] S. Kutsumizu, M. Goto, S. Yano, S. Schlick, Macromolecules, 35, 6298 (2002).
    [86] S. Kutsumizu, H. Tagawa, Y. Muroga, S. Yano, Macromolecules, 33, 3818 (2000).
    [87] M. E. L. Wouters, V. M. Litvinov, F. L. Binsbergen, J. G. P. Goossens, M. V. Duin, H. G. Dikland, Macromolecules, 36, 1147 (2003).
    [88] C. H. Y. Chen, R. M. Briber, E. L. Thomas, M. Xu, W. J. MacKnight, Polymer, 24, 1333 (1983).
    [89] C. H. Y. Chen-Tsai, E. L. Thomas, W. J. MacKnight, N. S. Schneider, Polymer, 27, 659 (1986).
    [90] C. Li, S. L. Goodman, R. M. Albrecht, S. L. Cooper, Macromolecules , 21, 2367 (1988).
    [91] E. J. Roche, E. L. Thomas, Polymer, 22, 333 (1981).
    [92] J. A. Koutsky, N. V. Hien, S. L. Cooper, J. Polym. Sci., Polym. Lett., 8, 353 (1970).
    [93] J. Foks, G. Michler, J. Appl. Polym. Sci., 31, 1281 (1986).
    [94] D. L. Handlin, W. J. MacKnight, E. L. Thomas, Macromolecules, 14, 795 (1981).
    [95] M. Serrano, W. J. MacKnight, E. L. Thomas, J. M. Ottino, Polymer, 28, 1667 (1987).
    [96] J. S. Hsu, S. A. Chen, Polymer, 34, 2769 (1993).
    [97] 許仁松, 博士論文, 清華大學, 1991年.
    [98] B. K. Kim, S. H. Paik, J. Polym. Sci., Polym. Chem., 37, 2703 (1999).
    [99] W. C. Chan, S. A. Chen, J. Polym. Sci., Polym. Phys., 28, 1499 (1990).
    [100] Z. S. Petrovic, I. J. Soda-So, J. Polym. Sci., Polym. Phys. Edn., 27, 545 (1989).
    [101] J. W. C. Van Bogart, P. E. Gibson, S. L. Cooper, J. Polym. Sci., Polym. Phys. Edn., 21, 65 (1983).
    [102] K. Ono, H. Shimada, S. Yanashita, H. Okamoto, Y. Minoura, J. Appl. Polym. Sci., 21, 3323 (1977).
    [103] N. S. Schneider, R. W. Matton, Polym. Eng. Sci., 19, 1122 (1979).
    [104] C. M. Brunette, S. L. Hsu, W. J. Macknight, N. S. Schneider, Polym. Eng. Sci., 21, 163 (1981).
    [105] C. M. Brunette, S. L. Hsu, M. Rossman, W. J. Macknight, N. S. Schneider, Polym. Eng. Sci., 21, 668 (1981).
    [106] M. Xu, W. J. Macknight, C. H. Y. Chen, E. L. Thomas, Polymer, 24, 1327 (1983).
    [107] C. H. Y. Chen, R. M. Briber, E. L. Thomas, M. Xu, W. J. Macknight, Polymer, 24, 1333 (1983).
    [108] B. Bengtson, C. Feger, W. J. Macknight, N. S. Schneider, Polymer, 26, 895 (1985).
    [109] C. Li, S. L. Goodman, R. M. Albercht, S. L. Cooper, Macromolecules, 21, 2367 (1988).
    [110] D. Cohen, A. Siegmann, Polym. Eng. Sci., 27, 286 (1987)
    [111] A. Siegmann, D. Cohen, Polym. Eng. Sci., 27, 1189 (1987).
    [112] T. K. Chen, C. J. Hwung, C. C. Hou, Polym. Eng. Sci., 32, 115 (1992).
    [113] T. A. Speckhard, G. V. Strate, P. E. Gibson, S. L. Cooper, Polym. Eng. Sci., 23, 337 (1983).
    [114] T. A. Speckhard, P. E. Gibson, S. L. Cooper, V. S. C. Chang, J. P. Kennedny, Polymer, 26, 55 (1985).
    [115] T. A. Speckhard, K. K. S. Hwang, S. L. Cooper, V. S. C. Chang, J. P. Kennedny, Polymer, 26, 70 (1985).
    [116] Y. Xu, M. R. Nagarajan, T. G. Grasel, P. E. Gibson, S. L. Cooper, J. Polym. Sci., Polym. Phys. Edn., 23, 2319 (1985).
    [117] R. A. Phillips, J. C. Stevenson, M. R. Nagarajan, S. L. Cooper, J. Macromol. Sci. Phys., B27, 245 (1988).
    [118] H. A. Al-Salah, H. X. Xiao, J. A. Mclean, Jr., K. C. Frisch, J. Polym. Sci., Polym. Chem., 26, 1609 (1988).
    [119] B. K. Kim, Y. M. Lee, Colloid Polym. Sci., 270, 956 (1992).
    [120] S. L. Hsu, H. X. Xiao, H. H. Szmant, K. C. Frisch, J. Appl. Polym. Sci., 29, 2467 (1984).
    [121] A. Eisenberg, Macromolecules, 4, 125 (1971).
    [122] A. Eisenberg, H. Matsura, J. Polym. Sci., A-2, Polym. Phys., 9, 213 (1971).
    [123] H. Matsura, A. Eisenberg, J. Polym. Sci., Polym. Phys. Ed., 14, 1201 (1976).
    [124] R. A. Weiss, S. R. Turner, R. D. Lundberg, J. Polym. Sci., Polym. Chem. Ed., 23, 549 (1985).
    [125] S. Provencher, Comput. Phys. Commun., 27, 213 (1982).
    [126] H. A. Al-Salah, K. C. Frisch, H. X. Xiao, J. A. Jr. Mclean, J. Polym. Sci., Polym. Chem. Ed., 25, 2127 (1987).
    [127] C. Z. Yang, K. K. S. Hwang, S. L. Cooper, Macromol. Chem., 184, 651 (1983).
    [128] T. A. Speckhard, K. K. S. Hwang, C. Z. Yang, W. R. Laupan, S. L. Cooper, J. Macromol. Sci. Phys., B23, 175 (1984).
    [129] J. T. Koberstein, A. F. Galambos, L. M. Leung, Macromolecules, 25, 6195 (1992).
    [130] J. T. Koberstein, L. M. Leung, Macromolecules, 25, 6205 (1992).
    [131] I. Yilgor, J. S. Rifle, G. L. Wilkes, J. E. McGrath, Polym. Bull., 8, 535 (1982).
    [132] Y. Gamberlin, J. P. Pascault, J. M. Letoffe, P. Glaudy, J. Polym. Sci., Polym. Chem. Edn., 20, 383 (1980).
    [133] Y. Gamberlin, J. P. Pascault, J. M. Letoffe, P. Glaudy, J. Polym. Sci., Polym. Phys. Edn., 20, 1445 (1982).
    [134] Y. Li, T. Gao, J. Liu, K. Linliu, C. R. Desper, B. Chu, Macromolecules, 25, 7365 (1992).
    [135] J. T. Koberstein, A. F. Galambos, Macromolecules, 25, 5618 (1992).
    [136] 陳俊宏, 碩士論文, 中央大學, 1997年.
    [137] T. A. Speckhard, S. L. Cooper, Rubber Chem. Technol., 59, 405 (1986).
    [138] T. L. Smith, J. Polym. Sci., Polym. Phys. Ed., 12, 1825 (1974).
    [139] T. L. Smith, Polym. Eng. Sci, 17, 129 (1977).
    [140] C. H. Y. Chen, E. L. Thomas, Polymer, 27, 659 (1986).

    QR CODE
    :::