| 研究生: |
林彥妘 Yen-Yun Lin |
|---|---|
| 論文名稱: |
尋找關鍵品項購買序列以分辨 VIP 顧客之研究 Discovering Key Item Buying Sequences to Identify VIP Customers |
| 指導教授: |
許秉瑜
Ping-Yu Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 企業管理學系 Department of Business Administration |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 資料探勘 、RFM價值分析 、K-Means分群 、序列分析 |
| 外文關鍵詞: | Data Mining, RFM, K-Means, Sequential Analysis |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據80/20法則,企業有高達約80%的利潤僅來自於約20%的VIP顧客,如果能有效地分辨出這些少數的VIP顧客,企業就能夠集中資源服務重要顧客,減少重要顧客的流失率。其中,企業為了瞭解顧客需求以及消費行為,經常使用資料探勘(Data mining)的方法分析顧客的購買習慣,藉此針對不同顧客群制訂不同的行銷方案。
本研究延續過去藉由關鍵品項尋找VIP顧客的研究,使用台灣某中型超級市場其中一家分店某年度之顧客交易資料,利用RFM價值分析法及K-Means分群將顧客分為VIP顧客及非VIP顧客,並使用序列分析且設定適當的最小規則支持度找出VIP顧客的頻繁品項購買序列,再以適當的門檻值篩選掉不具有鑑別力的序列,僅留下足以代表VIP顧客的關鍵品項購買序列。當一位潛在顧客購買了關鍵品項序列,則該顧客有很大的機會是為VIP顧客。
本研究找到38組關鍵品項購買序列,驗證比率(Accuracy)約為78%。且因本研究僅需要可辨識的會員編號,故對於僅有會員編號的匿名資料探勘方法亦有相當的貢獻。
According to the 80/20 Principle, about 80% of the profits of a company comes from just 20% of customers. If we are able to identify these customers, companies can invest all the efforts to serve those customers and decrease their attrition rate. This important issue has been researched by only few studies. In these studies, data are treated as sets of buying baskets.
In this study, transaction data are treated as sequence of buying baskets. The research then finding frequent item buying sequence through setting adequate minimal support in sequential analysis. Moreover, we choosing an adequate threshold value to filter only the key item buying sequences which have enough discriminability. This research discovered 38 key item buying sequence with the accuracy of 78%.
英文部分
1. Agrawal Rakesh and Srikant Ramakrishnan, 1995, "Mining sequential patterns", Proceedings - International Conference on Data Engineering, 3-14
2. Chen E., Cao H., Li Q., and Qian T., 2008, "Efficient strategies for tough aggregate constraint-based sequential pattern mining", Information Sciences
3. Cheng H., Yan X., Han J., 2004, "IncSpan: Incremental mining of sequential patterns in large database", KDD-2004 - Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
4. Ester M., Zhang X., 2004, "A top-down method for mining most specific frequent patterns in biological sequence data", SIAM Proceedings Series
5. EMC數位世界研究報告,2014,http://www.emc.com。
6. Heskett, J. L., Sasser, W. E., & Hart, C. W., 1989, "Service breakthrough", New York: The Free Press.
7. Joong Hyuk Chang, 2010, "Mining weighted sequential patterns in a sequence database with a time-interval weight", Knowledge-Based Systems
8. Kahan, Ron, 1998, "Using Database Marketing Techniques to Enhance Your One-to-One Marketing Initiatives", Journal of Consumer Marketing
9. Kum H.-C., Chang J.H., Wang W., 2006, "Sequential pattern mining in multi-databases via multiple alignment" Data Mining and Knowledge Discovery
10. Michael J. Berry, Gordon S. Linoff, 1999, “Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management”, Wiley
11. Miglautsch John, 2000, “Thoughts on RFM Scoring”, Journal of Database Marketing
12. Newell, F., 1997, “The new rules of marketing: How to use one-to-one relationship marketing to be the leader in your industry.” , New York: McGraw-Hill
13. Reichheld, F. F.,& Sasser, W. E., 1990, “Zero defections: Quality comes to service.”, Harvard Business Review
14. Richard Koch, 1997, "The 80/20 Principle", Nicholas Brealey Publishing.
15. Stone, Bob, 1989, "Successful direct marketing methods", NTC Business Books
16. Sung Ho Ha and Sang Chan Park, 1998, “Application of data mining tools to hotel data mart on the Intrant for database marketing”, Expert Systems with Applications
17. Tzvetkov P., Yan X., Han J., 2005, "TSP: Mining top-k closed sequential patterns", Knowledge and Information Systems
18. Vilfredo Pareto, 1906, "Manual of Political Economy"
19. Yang J., Wang W., Yu P.S., Han J., 2002, "Mining long sequential patterns in a noisy environment", Proceedings of the ACM SIGMOD International Conference on Management of Data
中文部分
1. 朱韋恩,2010,客戶重覆購買行為分析,淡江大學。
2. 李建達,2014,購物籃和顧客價值分析:以線上購買飲食行為為例,國立暨南國際大學。
3. 沈昭宏,2007,一個有效率的探勘時間間隔序列型樣方法,銘傳大學。
4. 胡世忠,2013,雲端時代的殺手級應用:Big Data海量資料分析,天下出版。
5. 郭明豪,2006,從顧客購買資料中挖掘RFM序列樣式,國立中央大學。
6. 陳佩琦,2014,尋找關鍵商品組合之研究,國立中央大學。
7. 楊子清,2003,序列樣式分析應用於課程規劃支援系統,資訊技術應用與發展研討會。
8. 溫志皓,2012,資料探勘理論與應用-以IBM SPSS Modeler為範例,博碩文化。
9. 廖一夫,2002,臺灣銀行業動態化預警模型之研究,國立成功大學。
10. 鄭承祐,2013,以關鍵商品分辨VIP客戶之研究,國立中央大學。
11. 鄭洧奇,2014,以基因演算法探討GSP 參數之研究,國立中央大學。
12. 賴春松,2002,提昇資料探勘效率於企業行銷之應用,南台科技大學。