| 研究生: |
徐羽模 Yu-Mo Hsu |
|---|---|
| 論文名稱: |
基因演算法於802.11AC AP 佈建干擾問題之應用 Application of Genetic Algorithms in the deployment and interference problem of 802.11AC AP |
| 指導教授: |
陳永芳
Yung-Fang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系在職專班 Executive Master of Computer Science & Information Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | IEEE802.11AC 、覆蓋率 、基地台佈建 |
| 外文關鍵詞: | IEEE 802.11AC, Coverage, WLAN AP deployment |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著無線通訊的進步,IEEE 802.11 也不例外,近兩年IEEE(電機電子工程
師協會)制訂了新的規格IEEE 802.11AC,之前IEEE 802.11n 常用的2.4GHz(ISM
Band)已趨近於飽和,IEEE 802.11AC 則選擇工作在5GHz,相較之下訊號受到干
擾的情況也大幅降低。現在802.11 無線基地台已成為多數人不可或缺的生活工
具,主要原因有三點,1、成本不高,大多數人都可負擔。2、架設簡單,不需要
專人幫忙架設。3、傳輸速度快,足夠供給區域網路(LAN)內的使用者使用。綜合
以上優點,多數單位機關都會大量的佈建802.11 無線基地台,以提供區域內使
用者能夠有方便的無線網路可使用。然而,多數人佈建時並不會考量到同頻道或
鄰近頻道互相干擾的問題,導致覆蓋邊緣地帶會被自己或其他單位架設無線基地
台所干擾,因而導致訊號不穩或是速度過慢的情況發生。在本篇論文,採用基因
演算法來解決大面積覆蓋時所產生的問題,除了顧及各個無線基地台的SINR(訊
號干擾加雜訊比)所造成的干擾產生的覆蓋率不同,並錯開各個鄰近無線基地台
頻道,再進行Matlab 的模擬。
As the progress of wireless communications, IEEE 802.11 is no exception. IEEE
(Institute of Electrical and Electronics Engineers)formulates new specification
IEEE802.11AC in the past two years. 2.4GHz(ISM) of IEEE802.11n is almost
saturated,and 802.11AC operates at 5GHz. In contrast, the signal has a smaller
chance having interference. Nowadays, 802.11 AP (Access Point) is one of our
necessary tools. It has three reasons:1.The cost is not expensive and everyone could
afford the AP router. 2. Setting up is not complicated. 3. The throughput is good and
the AP router can supply WLAN to users. Based on the above advantages,most
organizations could deploy lots of AP router for local users. Everyone usually ignores
channel interference problems. Sometimes, AP routers are interfered by other
company’s AP or set up AP by their own selves, which causes weak WLAN signal or
bad throughput. In this thesis,we use the genetic algorithm for solving the coverage
problem in the deployment of AP routers. We calculate SINRs among APs for the
radiation of AP routers. The AP router‘s channels are staggered. The simulation is
conducted to verify the efficacy of the proposed method.
[1] IEEE 802.11AC: What Does it Mean for Test? - LitePoint:
http://www.litepoint.com/whitepaper/80211AC_Whitepaper.pdf
[2] Mirin Lew, Agilent Technologies〝Introduction to 802.11AC WLAN Technology
and Testing〞:
http://www.home.agilent.com/agilent/home.jspx?lc=cht&cc=TW
[3] Data rates:http://en.wikipedia.org/wiki/IEEE_802.11AC
[4] 台灣區電機電子工業同業工會電子報:
http://www.teema.org.tw/epaper/20090218/industrial004.html
[5] 林昇甫、徐永吉,遺傳演算法及其應用,一版,五南書局,民國98年
[6] 林美杏,〝車載通訊系統研究與IEEE 802.11p效能分析〞,國立中央大學,
碩士論文,民國100年
[7] T. S. Rappaport, 〝Wireless communications: principles and practice 2nd edition,〞
Pearson Education International, 2002.
[8] S.A.C Schuckers,N.A. Schmid,A Abhyankar,V Dorairaj,C K Boyce, and L. A.
Hornak,〝On techniques for angle compensation in nonideal iris recongnition,〞
IEEE Trans.Syst,Man,Cybern.,Part B,vol.37,no 5,pp.1176-1190,2007
[9] Z.Sun,Y. Wang,T. Tan, and J. Cui,〝Improving iris recognition accuracy via
cascaded classifiers,〞IEEE Trans. Syst.Man,Cybern,Part C,vol.35,no.3pp
435-441,2005
[10] P.Broussard,R. Ives, and W. Robert, 〝Using artificial neural networks and
feature saliency to identify iris measurements that contain the most discriminatory
information for iris segmentation,〞in Proc.IEEE Int.Conf.Computational
Intelligence in Biometrics:Theory,Algorithms,and Application,pp.46-51,2009.
[11] M. Vatsa,R. Singh, A. Noore ,〝Improving iris recognition performance using
45
segmentation, quality enhancement match score fusion ,and indexing,〞IEEE
Trans Syst.,Man,Cybern,Part B,vol.38 no.4,pp.1021-1035,2008.
[12] L. Ma, T. Tan, Y. Wang, and D. Zhang, 〝Personal identification based on iris
texture analysis,〞IEEE Trans. Pattern Analysis and Machine Intelligence,vol.25,
no.12,pp.1519-1533,2003.
[13] X. Chang and J. H. Lilly,〝Evolutionary design of a fuzzy classifier from data,〞
IEEE Trans. Syst.,Man, Cybern.,Part B ,vol.31,pp.426-432,2001.
[14] H. M. Lee,C. M. Chen, J. M. Chen, and Y. L. Jou,〝An efficient fuzzy classifier,〞
IEEE Trans. Syst.,Man Cybern.,Part B,vol.31,no. 3,pp.426-432,2001.
[15] P. Meesad and G. G. Yen,〝Conbined numerical and linguistic knowledge
representation and its application to medical diagnosis〞IEEE Trans. Syst., Man,
Cybern., Part B, vol.33,no2,pp.206-222,2003.
[16] A. Chatterjee and A. Rakshit〝, Influential rule search schem(e IRSS)-a new fuzzy
pattern classifier,〞IEEE Trans. Knowledge and Data Engineering,vol. 16, no.
8,pp.881-893,2004.
[17] N. S. Chaudhari,A. Tiwari, and J. Thomas,〝Performance evalution of SVM
based semi-supervised classification algorithm,〞in Proc. IEEE Int. Conf.
Conreol, Automation.Robotics and Vision,pp.1942-1947,2008.
[18] H. Ishibuchi and T. Nakaskima,〝Improving the performance of fuzzy classifier
systems for pattern classication problems with continuos attributes,〞IEEE Trans.
Industrial Electronics, vol.46, no. 6, pp. 1057-1068,1999.
[19] M. S. Kim,C. H. Kim, and J. J. Lee,〝classifying neuro-biological signals by
evolutionary fuzzy classifier construction.〞in Proc. IEEE Int. Conf. Annual , vol.
2, pp.1813-1818,2004.
[20] S. Abe,〝Dynamic cluster generation for a fuzzy classifier with ellipsoidal
regions, 〞IEEE Trans. Syst., Man, Cybern., Part B, vol.28, no. 6, pp.
46
869-879,1998.
[21] T. Yang and L. Yao,〝A fuzzy classigier with adaptive learning of norm inducing
matrix,〞in Proc. IEEE Int. Conf. Networking, Sensing and Control, pp.
362-367,2007.
[22] S. Abe, R. Thawonmas, and M. Kayama, 〝A fuzzy classifier with ellipsoidal
regions for diagnosis problems,〞IEEE Trans. Syst., Man, Cybern., Part C, vol.
29, no. 1,pp. 140,1999.
[23] A. Bankar and M. F. Azeem,〝Input selection for TSK fuzzy model based on
modified mountain clustering,〞in Pro. IEEE Int. Conf. Intellgent System, pp.
295-299,2006.
[24] M. Cococcioni, B. Lazzerini,and F. Marcelloni,〝A TSK fuzzy model for
combining outputs of multiple classifiers,〞in Proc. IEEE Int. Conf. Fuzzy.
Information, vol. 2, pp.871-876,2004.
[25] K. Kim; Y. Kim, E. Kim, and M. Park,〝New TSK fuzzy modeling approach,〞in
Proc. IEEE Int. Conf. Fuzzy System, vol.2, pp. 773-776,2004.
[26] A. Kumar. D. P. Agrawal, and S. D. Joshi,〝A GA-based method for constructing
TSK fuzzy rules from numerical data,〞in Proc. IEEE Int. Conf. Fuzzy System,
vol.1, pp. 131-136,2003.
[27] T. Hatanaka, Y. Kawaguchi, and K. Uosaki,〝Nonlinear system identification
based on evolutionary fuzzy modeling,〞Proc. IEEE Int. Conf. Evolutionary
Computation, Vol. 1,pp. 646-651,2004.
[28] S. Qu, X. Wang, and M. Gong,〝Synchronization of unified chaotic systems and
application to secure communication,〞in Proc. IEEE Int. Conf. Control,
pp.370-373,2008.
[29] S. C. Qu, X. Y. wang, and M. J. Gong,〝Secure communication based on
synchronization of unified chaotic systems,〞in Proc. IEEE Int. Conf. Itelligent
47
Information Hiding and Multimedia Signal Processing,pp.1336-1339,2008.
[30] T. Yang and L. O. chua,〝Impulsive Stabilization for control and synchronization
of chaotic systems : theory and application to secure communication,〞IEEE
Trans. Circuits and Systems I : Fundamental Theory and applications, vol. 44,
no.10 , pp.976-988,1997.
[31] D. M. Li,〝Identification of chaotic systems with large noise based on regularized
feedforward neural networks,〞in Proc. IEEE Int. Conf. Machine Learning and
Cybernetics, vol. 7, pp.4060-4063,2005.
[32] G. P. Jiang, G. Chen, and W. K. S. Tang,〝Stabilizing unstable equilibria of
chaotic systems from a State observer approach,〞IEEE Trans. Circuits and
Systems II: Express Briefs, vol.51, no.6, pp.281-288,2004.
[33] G. Qian, X. Zhou, and S. Qiu,〝Chaotic control of nonlinear systems based on
improving cross correlation,〞in Proc. IEEE Int. Conf. Communications, Circuits
and Systems Proceedings,vol.4,pp.2381-2384,2006.
[34] H. B. Xu, B. C. Lu, and G. Chen〝, Chaotic control of a nonlinear continuous-time
system with uncertainty,〞in Proc. IEEE Int. Conf. Intelligent Control and
Automation,vol.5,pp.3274-3276.2000.
[35] Matlab history: http://zh.wikipedia.org/zh-tw/MATLAB