| 研究生: |
唐偉慎 Wei-Shen Tang |
|---|---|
| 論文名稱: |
使用遞迴預測誤差法於漢默斯坦預失真器之線性化 Linearization for Hammerstein Predistorter Using the Recursive Prediction Error Method |
| 指導教授: |
張大中
Dah-Chung Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 適應性預失真器 、間接學習結構 、分段線性函數 、遞迴預測誤差法 |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
正交分頻多工(Orthogonal Frequency Division Multiplexing,OFDM)因為高效率的頻寬效益以及多路徑通道的穩定傳輸,使得其成為現代無線通訊中不可或缺的技術。然而,此技術本身所擁有的高峰值對均值功率比(Peak-to-Average Power Ratio,PAPR)問題,造成功率放大器之非線性失真,導致調變訊號會有頻譜再生(Spectral regrowth)的現象而干擾鄰近通道的傳輸訊號。考慮到寬頻系統中的記憶性問題,本篇論文研究了功率放大器的新預失真技術。在過去的文獻中,已有許多預失真器模型能夠同時對功率放大器進行記憶非線性化的補償。在本論文的架構中,首先將真實功率放大器的模型表示成一個維納(Weiner)模型通式,預失真器的部分,則是在傳統的漢默斯坦(Hammerstein)模型中加入了基頻的單型規範分段線性(Simplicial Canonical Piecewise Linear, SCPWL)函數,用以模擬系統的非線性。與過去的預失真方法比較,所提出的預失真器能簡易的透過調整SCPWL函數分段區間的數量來達到所需求的補償效能。接著,於間接學習結構中再利用遞迴預測誤差法(Recursive Prediction Error Method,RPEM)來對所提出的預失真器參數做適應性的估測,實現理想的系統性能以及加快收斂的速度,就能達成高度的線性化補償。
It is well known that Orthogonal Frequency Division Multiplexing (OFDM) has become indispensable in modern wireless communications because of high frequency efficiency and high transmission stability in multi-path channel environments. However, OFDM has an inherent characteristic of high Peak-to-Average Power Ratio (PAPR) subject to nonlinear distortion of a power amplifier, leading to the phenomenon of spectral regrowth for modulated signals such that the adjacent communication channels are interfered. Taking into account the memory problem in wideband systems, this thesis studied a new pre-distortion scheme for the power amplifier. From previous researches in the literature, there have been many predistorter’s models considering to compensate for the nonlinearity effect of memory in a power amplifier. In our framework, we first establish the Weiner model for characterizing the power amplifier and then use the Hammerstein model for the predistorter along with the baseband Simplicial Canonical Piecewise Linear (SCPWL) function for nonlinear modeling. Compared with previous predistorting methods, the proposed predistorter is easier to reach the required performance by adjusting the number of segments of the SCPWL function. For the indirect predistortion architecture, we use the Recursive Prediction Error Method (RPEM) for adaptive estimation of the parameters of the proposed predistorter, which can achieve a satisfying system performance and fast convergence speed for better linearization.
[1] R. Nee and R. Prasad, OFDM for Wireless Multimedia Communications, 1st ed. Norwood, MA, USA: Artech House, Inc., 2000.
[2] P. B. Kenington, High Linearity RF Amplifier Design, 1st ed. Norwood, MA, USA: Artech House, Inc., 2000.
[3] G. Liu, P. Haldi, T. J. K. Liu, and A. M. Niknejad, “Fully integrated cmos power amplifier with efficiency enhancement at power back-off,” IEEE Journal of Solid-State Circuits, vol. 43, no. 3, pp. 600–
609, March 2008.
[4] J.-T. Chen, H.-S. Tsai, and Y.-K. Chen, “The optimal rls parameter tracking algorithm for a power amplifier feedforward linearizer,”IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 46, no. 4, pp. 464–468, Apr 1999.
[5] K. J. Muhonen, M. Kavehrad, and R. Krishnamoorthy, “Look-up table techniques for adaptive digital predistortion: a development and comparison,” IEEE Transactions on Vehicular Technology, vol. 49,no. 5, pp. 1995–2002, Sep 2000.
[6] C.-H. Lin, H.-H. Chen, Y.-Y. Wang, and J.-T. Chen, “Dynamicallyoptimum lookup-table spacing for power amplifier predistortion linearization,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 5, pp. 2118–2127, May 2006.
[7] Z. Y. He, J. H. Ge, S. J. Geng, and G. Wang, “An improved look-up table predistortion technique for hpa with memory effects in ofdm systems,” IEEE Transactions on Broadcasting, vol. 52, no. 1, pp.87–91, March 2006.
[8] M. Ghaderi, S. Kumar, and D. E. Dodds, “Fast adaptive polynomial i and q predistorter with global optimisation,” IEE Proceedings - Communications, vol. 143, no. 2, pp. 78–, Apr 1996.
[9] L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim,
and C. R. Giardina, “Memory polynomial predistorter based on the indirect learning architecture,” in Global Telecommunications Conference, 2002. GLOBECOM ’02. IEEE, vol. 1, Nov 2002, pp. 967–
971 vol.1.
[10] B. Ai, Z. D. Zhong, G. Zhu, R. T. Xu, and Z. Q. Li, “Two-dimensional indexing polynomial-based pre-distorter for power amplifiers with memory effects,” IET Communications, vol. 2, no. 10,pp. 1263–1271, November 2008.
[11] H. H. Chen, C. H. Lin, P. C. Huang, and J. T. Chen, “Joint polynomial and look-up-table predistortion power amplifier linearization,” IEEE Transactions on Circuits and Systems II: Express Briefs,vol. 53, no. 8, pp. 612–616, Aug 2006.
[12] D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of rf power amplifiers,” IEEE Transactions on Signal Processing, vol. 54, no. 10, pp. 3852–3860, Oct 2006.
[13] P. Julian, A. Desages, and O. Agamennoni, “High-level canonical piecewise linear representation using a simplicial partition,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 46, no. 4, pp. 463–480, Apr 1999.
[14] S. Choi, E. R. Jeong, and Y. H. Lee, “Adaptive predistortion with direct learning based on piecewise linear approximation of amplifier nonlinearity,” IEEE Journal of Selected Topics in Signal Processing, vol. 3, no. 3, pp. 397–404, June 2009.
[15] L. Ljung and T. Söderström, Theory and practice of recursive identification, ser. MIT Press series in signal processing, optimization, and control. MIT Press, 1985.
[16] A. A. M. Saleh, “Frequency-independent and frequency-dependent nonlinear models of twt amplifiers,” IEEE Transactions on Communications, vol. 29, no. 11, pp. 1715–1720, November 1981.
[17] C.Rapp, “Effects of hpa-nonlinearity on a 4-dpsk/ofdm-signal for a digital sound broadcasting system,” in Proceedings Second European Conf. on Sat. Comm, 1991, pp. 179–184.
[18] C. Eun and E. J. Powers, “A predistorter design for a memoryless nonlinearity preceded by a dynamic linear system,” in Global Telecommunications Conference, 1995. GLOBECOM ’95., IEEE,vol. 1, Nov 1995, pp. 152–156 vol.1.
[19] L. Ding, “Digital predistortion of power amplifiers for wirelessapplications,” Ph.D. dissertation, Georgia Institute of Technology,March 2004.
[20] M. Seo, S. Jeon, and S. Im, “Compensation for nonlinear distortion in ofdm systems using a digital predistorter based on the scpwl model,” in Wireless and Mobile Communications (ICWMC), 2010 6th International Conference on, Sept 2010, pp. 27–32.
[21] M. Y. Cheong, Development of digital predistorters for broadband power amplifiers in OFDM systems using the simplicial canonical piecewise linear function, ser. Aalto University publication series DOCTORAL DISSERTATIONS. Aalto University; Aaltoyliopisto, 2014.
[22] M. Y. Cheong, S. Werner, T. I. Laakso, J. Cousseau, and J. L.Figueroa, “Predistorter design employing parallel piecewise linear structure and inverse coordinate mapping for broadband communications,” in 2006 14th European on Signal Processing Conference,Sept 2006, pp. 1–5.
[23] T. Wigren, “Convergence analysis of recursive identification algorithms based on the nonlinear wiener model,” IEEE Transactions on Automatic Control, vol. 39, no. 11, pp. 2191–2206, Nov 1994.
[24] A. Hagenblad, “Aspects of the identification of wiener models,”Licentiate Thesis no. 793, Department of Electrical Engineering, Linköping University, SE-581 83 Linköping, Sweden, Nov. 1999.
[25] L. Gan and E. Abd-Elrady, “Linearization of weakly nonlinear volterra systems using fir filters and recursive prediction error method,” in 2008 IEEE Workshop on Machine Learning for Signal Processing, Oct 2008, pp. 409–414.
[26] E. Abd-Elrady, “A recursive prediction error algorithm for digital predistortion of fir wiener systems,” in 2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing,, July 2008, pp. 698–701.
[27] E. M. Siavashi, S. Afsharnia, M. T. Bina, M. K. Zadeh, and M. R. Baradar, “Frequency estimation of distorted signals in power systems using particle extended kalman filter,” in 2009 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS),, vol. 1, Dec 2009, pp. 174–178.
[28] T. Aboulnasr and K. Mayyas, “A robust variable step-size lms-type algorithm: analysis and simulations,” IEEE Transactions on Signal Processing, vol. 45, no. 3, pp. 631–639, Mar 1997.
[29] J. Wang, “A variable forgetting factor rls adaptive filtering algorithm,” in 3rd IEEE International Symposium,Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications
on, Oct 2009, pp. 1127–1130.
[30] L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Transactions on Communications, vol. 52, no. 1, pp. 159–165, Jan 2004.
[31] T. Liu, S. Boumaiza, and F. M. Ghannouchi, “Augmented hammerstein predistorter for linearization of broad-band wireless transmitters,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 4, pp. 1340–1349, June 2006.
[32] J. Moon and B. Kim, “Enhanced hammerstein behavioral model for broadband wireless transmitters,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 4, pp. 924–933, April 2011.
[33] G. Xu, T. Liu, Y. Ye, T. Xu, H. Wen, and X. Zhang, “Generalized two-box cascaded nonlinear behavioral model for radio frequency power amplifiers with strong memory effects,” IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 12, pp. 2888–2899, Dec 2014.