| 研究生: |
王世杰 Shih-Chieh Wang |
|---|---|
| 論文名稱: |
擬線性波方程中片段線性初始值問題的整體Lipchitz連續解的 The Global Lipchitz Continuous Solutions to the Quasilinear Wave Equation with Peicewise Linear Initial Data |
| 指導教授: |
洪盟凱
John M. Hong |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 28 |
| 中文關鍵詞: | 擬線性波方程 、守恆律 、非線性平衡律 、黎曼問題 、Lex方法 |
| 外文關鍵詞: | Lax method, Riemann problems, Nonlinear balance laws, Quasilinear wave equations, Conservation laws |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文裡面我們主要是對一些擬線性波方程研究Lipchitz連續解的總體存在性,藉著一次微分的假設當做新的未知數,我們重新把方程式寫成守衡律中的三乘三Hyberlbolic system,這個初始值問題對線性的初始值而言已經被解決了,解的一次微分的整體存在性是藉著Lex method 來建立的。
In this paper we study the global existence of Lipchitz continous solutions to the quasilinear wave equation. By letting the first derivatives as new unknowns, we rewrite the equation into a 3 by 3 hyperbolicsystem of conservation laws. The initial value problem of the ststem is studied for some linear initial data. The global existence of the first derivatives of solutions are established by Lex method.
[1] C. Dafermos, Generalized characteristics and the structure of solutions of
hyperbolic conservation laws, Ind. Univ. Math. J. 26 (1977), 1097-1119.
[2] C. Dafermos, Solutions of the Riemann problem for a class of conservation
laws by the viscosity method, Arch. Ration. Mech. Anal., 52 (1973), 1-9.
[3] G. Dal Maso, P. LeFloch and F. Murat, Definition and weak stability of
nonconservative products, J. Math. Pure. Appl., 74(1995), 483-548.
[4] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equa-
tions, Comm. Pure Appl. Math., 18(1956), 697-715.
[5] J. M. Hong, An extension of Glimm’s method to inhomogeneous strictly
hyperbolic systems of conservation laws by ”weaker than weaker” solutions
of the Riemann problem, J. Diff. Equations, 222(2006), 515-549.
[6] J. M. Hong and B. Temple, A Bound on the Total Variation of the Con-
served Quantities for Solutions of a General Resonant Nonlinear Balance
Law, SIAM J. Appl. Math. 64, No 3, (2004), pp 625-640.
[7] E. Isaacson and B. Temple, Convergence of 2 × 2 by Godunov method for
a general resonant nonlinear balance law, SIAM J. Appl. Math. 55 (1995),
pp 625-640.
[8] K. T. Joseph and P. G. LeFloch, Singular limits for the Riemann problem:
general diffusion, relaxation, and boundary condition, in ” new analytical
approach to multidimensional balance laws”, O. Rozanova ed., Nova Press,
2004.
[9] S. Kruzkov, First order quasilinear equations with several space variables,
Math. USSR Sbornik 10 (1970), 217-273.
[10] P. D. Lax, Hyperbolic system of conservation laws, II, Comm. Pure Appl.
Math., 10(1957), 537-566.
[11] T. P. Liu, The Riemann problem for general systems of conservation laws,
J. Diff. Equations, 18(1975), 218-234.
[12] T. P. Liu, Quaslinear hyperbolic systems, Comm. Math. Phys., 68(1979),
141-172.
[13] C. Mascia and C. Sinestrari, The perturbed Riemann problem for a balance
law, Advances in Differential Equations, 1996-041.
[14] O. A. Oleinik, Discontinuous solutions of nonlinear differential equations,
Amer. Math. Soc. Transl. Ser. 2, 26 (1957), 95-172.
[15] C. Sinestrari, The Riemann problem for an inhomogeneous conservation
law without convexity, Siam J. Math. Anal., Vo28, No1, (1997), 109-135.
[16] C. Sinestrari, Asymptotic profile of solutions of conservation laws with
source, J. Diff. and Integral Equations, Vo9, No3,(1996), 499-525.
[17] M. Slemrod and A. Tzavaras, A limiting viscosity approach for the Rie-
mann problem in isentropic gas dynamics, Ind. Univ. Math. J. 38 (1989),
1047-1073.
[18] J. Smoller, Shock waves and reaction-dffusion equations, Springer, New
York, 1983.
[19] A. Tzavaras, Waves interactions and variation estimates for self-similar
zero viscosity limits in systems of conservation laws, Arch. Ration. Mech.
Anal., 135 (1996), 1-60.
[20] A. Volpert, The space BV and quasilinear equations, Maths. USSR Sbornik
2 (1967), 225-267.28