| 研究生: |
張幼 Zhang-You |
|---|---|
| 論文名稱: |
利用MPAS模式探討大尺度環流變異度對莫拉克颱風(2009)路徑之影響 The Influence of Large-scale Flow Variability on Translation of Typhoon Morakot (2009) Using MPAS Simulations |
| 指導教授: |
黃清勇 博士
Ching-Yuang Huang 嚴明鉦 博士 Ming-Cheng Yen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣科學學系 Department of Atmospheric Sciences |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 大尺度環流 、颱風 |
| 外文關鍵詞: | MJO, MPAS |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
前人研究結果表明,西南季風與Madden-Julian oscillations (MJO)共同作用的大尺度條件下,莫拉克(Morakot)颱風(2009)在台灣登陸後停滯超過十五小時,給台灣南部帶來嚴重的災害。本文利用可變解析度(60-15 km)全球模式Model for Prediction Across Scales (MPAS) 探討不同時間尺度的季風環流對莫拉克颱風移動路徑的影響。模式的初始場取自ERA-interim的再分析資料,分離出三個不同時間尺度的分量,分別為綜觀尺度(SYN)、準雙週(QBW)以及MJO分量。
為了探討這三個分量各自對莫拉克路徑的影響,本研究設計了敏感性實驗。實驗結果表明,當初始環境場移除QBW和MJO兩個季風分量,莫拉克向西移動越過台灣,並且沒有北轉。當初始環境場的MJO分量增加50%,台灣東南部出現較強的南風和東南風異常,從而導致莫拉克相較實際觀測提早往北移動。在控制實驗中,莫拉克颱風路徑介於MJO強度分別增加和減少50%的路徑之間,顯示莫拉克向西移動與季風環流的連結作用是導致其向北移動的主要因素。
本文亦探討MJO對梅姬(Megi)颱風(2009)路徑的影響。模擬結果與上述莫拉克路徑結論一致,當模式初始場移除MJO分量後,原本北轉的梅姬颱風在登陸菲律賓後,繼續向西移動,並在中國海南島北部二次登陸。
This study uses the global MPAS Model at variable 60-15 km resolution to investigate the interaction between the Typhoon Morakot (2009) and the large-scale environmental flows. Three components of different time scales are filtered from ERA-interim for the model initial fields, namely the synoptic-scale (SYN) mode, quasi-biweekly (QBW) mode and the Madden-Julian oscillations (MJO) mode. To investigate the individual effect of multi-time-scale flows on the evolution of Typhoon Morakot, sensitivity experiments are conducted. Compared to the WRF simulations with different resolutions, the simulation of the TC movement is better for the control experiment, especially the northward turn after making landfall. In the absence of larger-scale monsoonal flow (no_QBW and no_MJO), the simulated Morakot in general takes a quite westward track across Taiwan, without the observed northward movement after landfall. On the other hand, there exists southwesterly wind anomaly from South China Sea to the vicinity east of Taiwan in the Western North Pacific when the intensity of MJO component in the initial field is enhanced by 50%, thus resulting in a north turn of Morakot at a much earlier time than the observed. The simulated Morakot track under the intact MJO component lies in between MJO+50% and MJO-50% experiments, which suggests that the coalescence of Morakot with the monsoonal flow may be intimately related to its north turn after landfall.
The MJO on the track of Typhoon Megi also shows similar impacts as in Morakot. In the absence of MJO, the simulated Megi in general takes a westward movement after passing over the Philippines without turning north.
Bi, M., T. Li, M. Peng, and X. Shen, 2015: Interactions between Typhoon Megi (2010) and a Low-Frequency Monsoon Gyre*. Journal of the Atmospheric Sciences, 72, 2682-2702.
Chen, G., and C.-H. Sui, 2010: Characteristics and origin of quasi-biweekly oscillation over the western North Pacific during boreal summer. Journal of Geophysical Research, 115.
Chien, F. C., and H. C. Kuo, 2011: On the extreme rainfall of Typhoon Morakot (2009). Journal of Geophysical Research: Atmospheres, 116, D05104, doi:10.1029/2010JD015092.
Ching, L., C.-H. Sui, M.-J. Yang, and P.-L. Lin, 2015: A modeling study on the effects of MJO and equatorial Rossby waves on tropical cyclone genesis over the western North Pacific in June 2004. Dynamics of Atmospheres and Oceans, 72, 70-87.
Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. Journal of Applied Meteorology, 18, 1016-1022.
Elsberry, R. L. (2004), Monsoon‐related tropical cyclones in East Asia, in East Asian Monsoon, World Scientific Series on Meteorology of East Asia, vol. 2, edited by C.‐P. Chang, pp. 463–498, World Sci., Singapore.
Fang, X., Y.-H. Kuo, and A. Wang, 2011: The impacts of Taiwan topography on the predictability of Typhoon Morakot's record-breaking rainfall: A high-resolution ensemble simulation. Weather and Forecasting, 26, 613-633.
Farge, M., 1992: Wavelet transforms and their applications to turbulence. Annual review of fluid mechanics, 24, 395-458.
Ge, X., T. Li, S. Zhang, and M. Peng, 2010: What causes the extremely heavy rainfall in Taiwan during Typhoon Morakot (2009)? Atmospheric science letters, 11, 46-50.
Hagos, S., R. Leung, S. A. Rauscher, and T. Ringler, 2013: Error characteristics of two
grid refinement approaches in aquaplanet simulations: MPAS-A and WRF. Monthly Weather Review, 141, 3022-3036.
Hack, J. J., and W. H. Schubert, 1981: Lateral boundary conditions for tropical cyclone models. Monthly Weather Review, 109, 1404-1420.
Harr, P. A., and R. L. Elsberry, 1991: Tropical cyclone track characteristics as a function of large-scale circulation anomalies. Monthly Weather Review, 119, 1448-1468.
Hendricks, E. A., J. R. Moskaitis, Y. Jin, R. M. Hodur, J. D. Doyle, and M. S. Peng, 2011: Prediction and Diagnosis of Typhoon Morakot (2009) Using the Naval Research Laboratory's Mesoscale Tropical Cyclone Model. Terrestrial, Atmospheric & Oceanic Sciences, 22, 579-594.
Hong, C. C., M. Y. Lee, H. H. Hsu, and J. L. Kuo, 2010: Role of submonthly disturbance and 40–50 day ISO on the extreme rainfall event associated with Typhoon Morakot (2009) in southern Taiwan. Geophysical Research Letters, 37, L08805, doi: 10.1029/2010GL042761.
Huang, C.-Y., C.-S. Wong, and T.-C. Yeh, 2011: Extreme Rainfall Mechanisms Exhibited by Typhoon Morakot (2009). Terrestrial, Atmospheric & Oceanic Sciences, 22, 613-632.
Hsu, P.-C., and T. Li, 2011: Interactions between Boreal Summer Intraseasonal Oscillations and Synoptic-Scale Disturbances over the Western North Pacific. Part II: Apparent Heat and Moisture Sources and Eddy Momentum Transport*. Journal of Climate, 24, 942-961.
Ko, K.-C., and H.-H. Hsu, 2006: Sub-monthly circulation features associated with tropical cyclone tracks over the East Asian monsoon area during July-August season. 気象集誌. 第 2 輯, 84, 871-889.
Ko, K. C., and H. H. Hsu, 2009: ISO modulation on the submonthly wave pattern and recurving tropical cyclones in the tropical western North Pacific. Journal of Climate, 22(3), 582-599.
Liang, J., L. Wu, X. Ge, and C.-C. Wu, 2011: Monsoonal Influence on Typhoon Morakot (2009). Part II: Numerical Study. Journal of the Atmospheric Sciences, 68, 2222-2235.
Liebmann, B., Hendon, H. H., & Glick, J. D. (1994). The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden-Julian oscillation. Journal of the Meteorological Society of Japan, 72(3), 401-412.
Liebmann, B., 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275-1277.
Skamarock, W., and Coauthors, 2008: A description of the advanced research WRF Version 3, NCAR tech note NCAR/TN 475 STR, 125 pp. Available from: UCAR Communications, PO Box, 3000.
Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Monthly Weather Review, 140, 3090-3105.
Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bulletin of the American Meteorological society, 79, 61-78.
Wang, C.-C., H.-C. Kuo, Y.-H. Chen, H.-L. Huang, C.-H. Chung, and K. Tsuboki, 2012: Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall. Journal of the Atmospheric Sciences, 69, 3172-3196.
Wu, C.-C., and Y.-H. Kuo, 1999: Typhoons affecting Taiwan: Current understanding and future challenges. Bulletin of the American Meteorological Society, 80, 67-80.