跳到主要內容

簡易檢索 / 詳目顯示

研究生: 丁國平
Kuo-Ping Ting
論文名稱: 網狀電極應用在氮化物紫外光光偵測器之研究
Study of Mesh Electrode on Nitride-based Ultraviolet Photodetector
指導教授: 郭政煌
Cheng-Huang Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 95
語文別: 中文
論文頁數: 66
中文關鍵詞: 光響應度暗電流光電流透明導電層網狀電極鑑別率
外文關鍵詞: Dark Current, Rejection ratio, Photocurrent, Responsivity, ITO, TCL, GaN, PIN
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於目前的P-型半導體的阻抗仍大,電流無法均勻的分佈,以致於需要在P-型半導體上鍍上一層透明導電層,協助電流的分佈,但在光偵測器元件方面,透明導電層卻也同時吸收了部分的入射光,導致光偵測器元件的特性表現下降。
    本論文即在探討應用不同材料與不同結構的透明導電層,在氮化鎵系列PIN紫外光光偵測器上的特性表現,使用的材料分為Ni/Au與銦氧化錫(ITO),結構分為平面式與網狀式,而氮化鎵系列PIN紫外光光偵測器的磊晶結構,分為氮化鎵、氮化鋁鎵與具視窗層的氮化鋁鎵等三種,主要比較的元件特性有暗電流、光電流、光響應度與可見光鑑別率。
    在三種磊晶架構中,無論是Ni/Au或是ITO,網狀式的透明導電層的應用均能有效的提昇光響應度且不影響暗電流與可見光鑑別率的表現,只是在光響應度的提昇量方面我們發現與透明導電層的穿透率、元件截止波長與視窗層結構運用有關。例如透明導電層穿透率較差的Ni/Au元件,光響應度的提昇量較多,而截止波長在335nm的元件光響應度的提昇量也較多。
    在紫外光光偵測器的應用方面,紫外光波段B(320nm~280nm)與波段C(280nm以下)的應用是最多的,但透明導電層的穿透率表現卻是最差的,因此網狀透明導電層應用在這些波段時光響應度的提昇也會較多。


    Due to the high resistance of P-type semiconductor, We have to deposit a Transparent Conduct Layer (TCL) as a Current Spreading Layer and a Electrode at the same time. However, TCL absorbs some power from the incident light that reduces the performance of photo-detectors(PDs). Therefore, the aim of this article attempts to explore how mesh electrode increases the responsivity of PD by reducing the absorbing power of TCL.
    In this experiment, GaN、AlGaN and AlGaN with window Layer GaN-based PIN wafer were prepared. Then we deposited Ni/Au and ITO as TCLs. Finally, we made TCLs into Planar and Mesh structures.
    Results of this study showed mesh TCL raises the responsivity of PDs. Although the quantity of improvement on responsivity is related to the transmittance of TCLs and the cut-off wavelength of PDs, We still have up to 24% raise on AlGaN PDs. To conclude, since transmittance of TCLs is not so well in wavelength UV-B(320nm~280nm) and UV-C(below 280nm), applying of mesh TCLs will get better improvement on responsivity.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 符號說明 IX 一、 緒論 1 二、 實驗原理 3 2-1 PIN光偵測器 3 2-2 透明導電層(Transparent Conductive Layer, TCL) 3 2-3 光偵測器參數 4 2-3-1 光響應度(Responsivity, R) 4 2-3-2 量子效率(Quantum Efficiency, ηext) 4 2-3-3 鑑別率(Rejection Ratio) 5 2-4 量測系統 5 2-4-1 暗電流量測 5 2-4-2 光電流量測 6 2-4-3 光響應度(Responsivity) 7 三、 實驗步驟 10 3-1 磊晶結構 10 3-2 元件製程 11 四、 元件量測結果與分析 26 4-1 氮化鎵PIN光偵測器之特性分析 26 4-1-1 平面式與網狀式Ni/Au透明導電層比較 26 4-1-2 平面式ITO與網狀式ITO透明導電層比較 27 4-1-3 網狀式Ni/Au與網狀式ITO透明導電層比較 28 4-2 氮化鋁鎵PIN光偵測器之特性分析 28 4-2-1 平面式Ni/Au與網狀式Ni/Au透明導電層比較 28 4-2-2 平面式ITO與網狀式ITO透明導電層比較 29 4-2-3 網狀式Ni/Au與網狀式ITO透明導電層比較 29 4-3 具視窗層結構的氮化鋁鎵PIN光偵測器之特性分析 30 4-3-1 平面式Ni/Au與網狀式Ni/Au透明導電層比較 30 4-3-2 平面式ITO與網狀式ITO透明導電層比較 31 4-3-3 網狀式Ni/Au與網狀式ITO透明導電層比較 32 4-4 孔洞面積、穿透率與光響應度 32 五、 結論與未來展望 51 5-1 結論 51 5-2 未來工作 52 參考文獻 54

    [1] J. I. Pankove, “Perspective on gallium nitride,” Proc. Mater. Res. Soc., vol. 162, May 1990, pp. 515-519.
    [2] D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu, and M. Razeghi, “AlGaN ultraviolet photoconductors grown on sapphire”, Appl. Phys. Lett. 68 (15), 8 Apr. 1996.
    [3] EMunoz, E Monroy, J L Pau, F Calle, F Omn`es and P Gibart, “III nitrides and UV detection”, J. Phys.: Condens. Matter 13 (2001) 7115–7137.
    [4] E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumout,P. Gibart, J. A. Muñoz, and F. Cussó, “High-performance GaN p–njunction photodetectors for solar ultraviolet applications,” Semicond. Sci.Technol., vol. 13, pp. 1042-1046, June 1998.
    [5] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov, and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection,” Appl. Phys. Lett., vol. 70, pp. 2277-2279, Apr. 1997.
    [6] Z. C. Huang, J. C. Chen, and D. Wickenden, “Characterization of GaN using thermally stimulated current and photocurrent spectroscopies and its application to UV detectors,” J. Cryst. Growth, vol. 170, pp. 362-362, Jan. 1997.
    [7] G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, and U. K. Mishra, “High performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN,” Appl. Phys. Lett., vol. 75, pp. 247-249, July 1999.
    [8] M. S. Shur, “GaN Based Transistors for High Power Applications”, Solid-State Electronics, Vol. 42, pp. 2131 (1998).
    [9] T. Li, A. L. Beck, C. Collins, R. D. Dupuis, and J. C. Campbell, “Improved ultraviolet quantum efficiency using a semitransparent recessed window AlGaN/GaN heterojunction p-i -n photodiode”, Appl. Phys. Lett., Vol. 75, No 16, 18 OCT. 1999.
    [10] R. McClintock, A. Yasan, K. Mayes, D. Shiell, S. R. Darvish, P. Kung, and M. Razeghi, “High quantum efficiency AlGaN solar-blind p-i-n photodiodes”, Appl. Phys. Lett., Vol. 84, No 8, 23 FEB. 2004.
    [11] 黃宏基,「P-型氮化鎵歐姆接觸製作研究」,國立中央大學,光電科學研究所,碩士論文,2000。
    [12] 唐邦泰,「透明導電膜與氮化鎵接觸特性研究」,國立中央大學,光電科學研究所,碩士論文,2001。
    [13] S. M. Sze, Semiconductor Device Physics and Technology., pp. 278 1985.
    [14] David Wood, Optoelectronic Semiconductor Devices., p276-329.
    [15] J. K. Sheu, and Y. K. Su, “High-transparency Ni/Au ohmic contact to p-type GaN”, Appl. Phys. Lett., Vol. 74, No 16, 19 APR. 1999.
    [16] J.C. Carrano, T. Li, P.A. Grudowski, C.J. Eiting, D. Lambert, J.D. Schaub, R.D. Dupuis and J.C. Campbell, “Low dark current pin ultraviolet photodetectors fabricated on GaN grown by metal organic chemical vapour deposition”, ELECTRONICS Lett. Vol. 34 No. 7, 2nd April 1998.
    [17] S. Ruvimov, Z. Liliental-Weber, and J.Washburn,
    ”Microstructure of Ti/Al and Ti/Al/Ni/Au Ohmic contacts for n–GaN”, Appl. Phys. Lett. 69 (11), 9 September 1996.
    [18] G. K. Reeves and H. B. Harrison, ”Obtaining the Specific Contact Resistance from Transmission Line Model Measurement”, IEEE Electron Device Lett.,Vol. Edl-3, No 5. May 1982.
    [19] Chin-Yuan Hsu, “Effect of thermal annealing of NiÕAu ohmic contact on the leakage current of GaN based light emitting diodes”, Appl. Phys. Lett., Vol. 83, No. 12, 22 Sept. 2003.

    QR CODE
    :::