| 研究生: |
李佳璟 Li-jia-jing |
|---|---|
| 論文名稱: |
基於基板合成波導與微帶線混合結構實現寬止帶之帶通濾波器與雙工器 Wide Stopband Bandpass Filter and Diplexer Based on SIW and Microstrip Hybrid Structure |
| 指導教授: |
凃文化
Wen-Hua Tu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 基板合成波導 、帶通濾波器 、雙工器 、寬止帶 |
| 外文關鍵詞: | Substrate Integrated Waveguide, Bandpass filter, Diplexer, Wide stopband |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出了一種結合基板合成波導共振器和微帶線共振器的混合結構,並應用於設計具有寬止帶特性的帶通濾波器和雙工器。該結構旨在克服單一結構的限制,通過在電路輸入和輸出端配置基板合成波導共振器來提高頻寬,同時在電路架構中整合微帶線共振器以減少整體電路面積。此設計能夠利用不同類型共振器的架構,錯開其高階模態頻率,實現寬止帶響應。在本文中,帶通濾波器的中心頻率操作於3.5 GHz。設計中對基板合成波導腔體的形狀進行了改造,並與四分之一波長步階阻抗共振器相結合。同時,在基板合成波導腔體中嵌入槽孔,以引入槽孔模態來干擾雜散模態,提升止帶表現。此外,設計中將四分之一波長步階阻抗共振器的尺寸縮小,以減少面積,從而實現整體電路的緊湊化效果。在下一個雙工器電路中,兩通帶之中心頻率分別操作於2 GHz與4 GHz,通過將終端短路步階阻抗共振器整合到半模共振器與四分之一模共振器之間,來操作其基頻與第一高階模態頻率,以實現寬止帶特性。第一級電路的半模共振器,操作的模態為TE101與TE301,其在文中進行了改造,通過改變基板合成波導的金屬通孔邊界,在保留原尺寸之情況下,降低了兩模態頻率,從而減少電路導波波長單位面積。兩個電路的章節末皆有提供量測數據與模擬結果之比較,以驗證設計。
This thesis proposes a hybrid structure combining substrate integrated waveguide (SIW) resonators and microstrip line resonators for designing bandpass filters and diplexers with wide stopband characteristics. The design enhances bandwidth by configuring SIW resonators at the input and output ports, while integrating microstrip line resonators to reduce overall circuit area. This approach exploits different resonator structure to stagger higher-order mode frequencies, achieving wide stopband responses. For the bandpass filter, operating at 3.5 GHz, the design modifies the SIW resonator cavity shape, combines it with a quarter-wavelength stepped impedance resonator, and embeds slots for improved stopband performance. The size of the quarter-wavelength stepped impedance resonator is reduced to achieve circuit compactness. In the diplexer circuit, with center frequencies at 2 GHz and 4 GHz, shorted-end stepped impedance resonators are integrated between half-mode resonators and quarter-mode resonators to control fundamental and high-order mode frequencies for wide stopband characteristics. Modification of the half-mode resonator in the first-order circuit decreases mode frequencies while maintaining original size, reducing the circuit area. Both circuits provide measurement data and simulation results comparison for validation.
[1] X. P. Chen and K. Wu, "Substrate integrated waveguide Filter: Basic design rules and fundamental structure features," IEEE Microw. Mag., vol. 15, no. 5, pp. 108-116, July/Aug. 2014.
[2] X. P. Chen, K. Wu and D. Drolet, "Substrate integrated waveguide filter with improved stopband performance for satellite ground terminal," IEEE Trans. Microw Theory Tech., 57, no. 3, pp. 674-683, March 2009.
[3] H. -W. Xie, K. Zhou, C. -X. Zhou and W. Wu, "Wide-stopband SIW filters using modified multi-spurious modes suppression technique," IEEE Trans. Circuits Syst. II, Exp. Briefs,vol. 67, no. 12, pp. 2883-2887, Dec. 2020.
[4] D. Li et al., "SIW cavity mode analysis and control techniques for compact wide-stopband filters design," IEEE Trans. Circuits Syst. II, Exp. Briefs, 2024.
[5] F. Zhu, W. Hong, J. -X. Chen and K. Wu, "Cross-coupled substrate integrated waveguide filters with improved stopband performance," IEEE Microw. Wireless Compon. Lett.,vol. 22, no. 12, pp. 633-635, Dec. 2012,
[6] Y. Zheng, Y. Zhu and Y. Dong, "Compact hybrid bandpass filter using SIW and CSRRs with wide stopband rejection," Asia Pacific Microw. Conf., pp. 767-769, Hong Kong, 2020.
[7] Chaudhury SS, Awasthi S, Singh RK, "Dual-mode bandpass filter based on substrate-integrated waveguide loaded with complementary split ring resonators," Microw Opt Technol Lett. vol. 60, pp. 2639-2642, 2018.
[8] N. Chudpooti, P. Sangpet, S. Chudpooti, D. Torrungrueng, N. Somjit and P. Akkaraekthalin, "A controllable planar wideband bandpass filters using the combination of microstrip and substrate integrated waveguide structure," Int. Tech. Conf. Circuits/Syst. Comput. Commun., pp. 1-3, 2021.
[9] F. Deng, S. -W. Wong, R. -S. Chen, S. -F. Feng and Q. -X. Chu, "An improved compact substrate integrated waveguide (SIW) bandpass filter with sharp rejection and wide upper-stopband," Asia Pacific Microw. Conf., pp. 1-3, 2015.
[10] A. R. Azad and A. Mohan, " Substrate integrated waveguide dual-band and wide-stopband bandpass filters, " IEEE Microw. Wireless Compon. Lett., vol. 28, no. 8, pp. 660-662, Aug. 2018
[11]P. Chu et al., "Using Mixed Coupling to Realize Wide Stopband Multilayer Substrate Integrated Waveguide Filter," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 70, no. 8, pp. 2744-2748, Aug. 2023.
[12] F. Cheng, X.-T. Li, P. Lu and K. Huang, "SIW filter with broadband stopband by suppressing the coupling of higher-order resonant modes," Electron. Lett., vol. 55, pp. 1345-1347, 2019.
[13] Q. Liu, J. -J. Wei, K. Gong, H. Qian, B. -H. Ma and D. -W. Zhang, "Wide-stopband substrate integrated waveguide filters based on single-mode cavities with multiple-cross slots," IEEE Trans. Circuits Syst. II: Express Briefs, vol. 70, no. 12, pp. 4369-4373, Dec. 2023.
[14] Liu, B., Lyu, Y.-P., Zhu, L., Cheng, C., "A compact triple-mode bandpass filter with wide-stopband using half-mode substrate integrated waveguide cavity loaded with slots," Microw. Opt. Technol. Lett., vol. 62, 2019.
[15] R. K. Barik, S. Koziel and S. Szczepanski, "Highly-miniaturized dual-mode bandpass filter based on quarter-mode substrate integrated waveguide with wide stopband," IEEE Access, vol. 10, pp. 42163-42170, 2022.
[16] Y. Zhu and Y. Dong, "A novel compact wide-stopband filter with hybrid structure by combining SIW and microstrip technologies," IEEE Microw. Wireless Compon. Lett., vol. 31, no. 7, pp. 841-844, July 2021.
[17] W. Shen, "Extended-doublet half-mode substrate integrated waveguide bandpass filter with wide stopband," IEEE Microw. Wireless Compon. Lett., vol. 28, no. 4, pp. 305-307, April 2018.
[18] K. Zhou, C. -X. Zhou and W. Wu, "Resonance characteristics of substrate-integrated rectangular cavity and their applications to dual-band and wide-stopband bandpass filters design," IEEE Trans. Microw. Theory Tech., vol. 65, no. 5, pp. 1511-1524, May 2017.
[19] N. Liu, C. Fan, X. Liu, Z. Zhu and Y. Yang, "Wide-stopband diplexer with small frequency ratio based on SIW dual-mode resonators for millimeter-wave applications," IEEE Trans. Compon. Packag. Manuf. Technol., vol. 13, no. 2, pp. 284-287, Feb. 2023.
[20] H. -W. Xie, K. Zhou, C. -X. Zhou and W. Wu, "Compact SIW diplexers and dual-band bandpass filter with wide-stopband performances," IEEE Trans. Circuits Syst. II: Express Briefs, vol. 67, no. 12, pp. 2933-2937, Dec. 2020
[21] Zhou K, Zhou C, Wu W. Compact planar substrate-integrated waveguide diplexers with wide-stopband characteristics. Int J RF Microw Comput Aided Eng., vol. 30, 2020.
[22] D. Ma, K. Zhou, H. Xie, T. Huang and W. Wu, "Compact or wide-stopband SIW diplexers with high intrinsic isolations based on orthogonal dual modes," IEEE Trans. Circuits Syst. II: Express Briefs, vol. 70, no. 1, pp. 71-75, Jan. 2023.
[23] Z. L. Su, B. W. Xu, S. Y. Zheng, H. W. Liu and Y. L. Long, "High-isolation and wide-stopband SIW diplexer using mixed electric and magnetic coupling," IEEE Trans. Circuits Syst. II: Express Briefs, vol. 67, no. 1, pp. 32-36, Jan. 2020.
[24]Q. Liu, D. Zhang, M. Tang, H. Deng and D. Zhou, " A class of box-like bandpass filters with wide stopband based on new dual-mode rectangular SIW cavities," IEEE Trans. Microw. Theory Tech., vol. 69, no. 1, pp. 101-110, Jan. 2021.
[25] D. Deslandes and K. Wu, "Single-substrate integration technique of planar circuits and waveguide filters," IEEE Trans. on Microw. Theory Tech., vol. 51, pp. 593-596, Feb. 2003.
[26] K. Zhou and K. Wu, "Miniaturized diplexers with large frequency ratios based on common half-mode dual-mode SIW junction-cavities," IEEE Trans. Microw. Theory. Tech., vol. 69, no. 12, pp. 5343-5350, Dec. 2021.
[27] D. M. Pozar, Microwave engineering. Fourth edition. Hoboken, NJ : Wiley, 2012.
[28] R. Mongia, I. Bahl, P. Bhartia, and J.-S. Hong, RF and microwave coupled-line circuits. Artech House, 2nd ed., 2007.
[29] M. Sagawa, M. Makimoto, and S. Yamashita, “Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators” IEEE Trans. Microw. Theory Tech., vol. 45, no. 7, pp. 1078–1085, Jul. 1997.
[30] S. -J. Sun, T. Su, K. Deng, B. Wu, C. -H. Liang, "Shorted-ended stepped-impedance dual-resonance resonator and its application to bandpass filters," IEEE Trans. Microw. Theory Tech., vol. 61, no. 9, pp. 3209-3215, Sept. 2013.
[31] K. Zhou and K. Wu, "Miniaturized diplexers with large frequency ratios based on common half-mode dual-mode SIW junction-cavities," IEEE Trans. Microw. Theory. Tech., vol. 69, no. 12, pp. 5343-5350, Dec. 2021.
[32] D. Deslandes and K. Wu, "Integrated transition of coplanar to rectangular waveguides," IEEE MTT-S Int. Microw. Symp. Digest, vol. 2, pp. 619-622, 2001.
[33] P. Chu, J. Feng, L. Guo, L. Zhang, L. Liu, K. Wu, "Multilayer substrate integrated waveguide filter with multimode suppression and wide stopband," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 69, pp. 4553-4557, 2022.
[34] A. Iqbal, J. J. Tiang, C. K. Lee, B. M. Lee, "Tunable substrate integrated waveguide diplexer with high isolation and wide stopband," IEEE Microw. Wireless Compon. Lett., vol. 29, no. 7, pp. 456-458, Jul. 2019.
[35] Z. L. Su, B. W. Xu, S. Y. Zheng, H. W. Liu, and Y. L. Long, “High isolation and wide-stopband SIW diplexer using mixed electric and magnetic coupling,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 1, pp. 32–36, Jan. 2020.
[36] X. Liu, Z. Zhu, Y. Liu, Q. Lu, X. Yin, Y. Yang, "Compact bandpass filter and diplexer with wide-stopband suppression based on balanced substrate-integrated waveguide," IEEE Trans. Microw. Theory Techn., vol. 69, no. 1, pp. 54–64, Jan. 2021.Syst. II, Exp. Briefs, vol. 67, no. 1, pp. 32–36, Jan. 2020.