跳到主要內容

簡易檢索 / 詳目顯示

研究生: 翁瑞隆
Rui-long Weng
論文名稱: 雙閘極含鍺量子點n與p型複晶矽薄膜電晶體之光響應研究
Photoresponses Study of Double-gated n- and p-type poly-Si Phototransistors Incorporating Germanium Quantum Dots in the Top-gate Dielectric.
指導教授: 李佩雯
Pei-wen Li
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 77
中文關鍵詞: 鍺量子點複晶矽薄膜電晶體
外文關鍵詞: Germanium Quantum Dots, poly-Si Phototransistors, Photoresponses
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,主要目的是想利用固相結晶法在550 oC環境中進行回火24小時,達到增加元件主動層中晶粒尺寸,減少晶界數目,提升含鍺量子點薄膜電晶體的光增益,改善載子在通道的傳輸速率及操作電流。從本實驗室之前所開發的鍺量子點薄膜電晶體的量測結果中,發現無鍺量子點薄膜電晶體,其照光下汲極飽和電流與未照光時汲極飽和電流相比具有35%的增益,而上部閘氧化層耦合鍺量子點薄膜電晶體可達65%的增益。雖然光響應的確可經由鍺量子點較佳的吸光率而增強,但是增加幅度不如預期。我們推測是因為複晶矽通道中為數眾多的晶界受到照光時也會激發出電子/電洞對,因而對無鍺量子點薄膜電晶體的光增益有所貢獻。並且由於通道中晶界對於載子而言屬於一種缺陷,而造成照光下鍺量子點激發出的主要載子進入通道後的載子遷移率較低,使得光響應較不那麼明顯。因此本論文利用非晶矽固相結晶法 (solid phase crystallization,SPC) 形成元件主動層,再以LPCVD系統所沉積而成的複晶矽薄膜做為一對照組,藉此分析n型與p型元件光響應的差別。


    The main purpose of this thesis is to investigate how to improve the photoresponse of poly-Si TFTs with Ge QDs using SPC of a-Si in channel fabrication.
    We have successfully demonstrated that the photoresponse of poly-Si TFTs could be enhanced by a factor of 2 by incorporating Ge QDs into the gate oxide. However we know that a polycrystalline silicon film deposited by LPCVD system (as-deposited poly-Si) at 620 oC has smaller grains and more grain boundaries. Grain boundaries in the channel behave like traps to reduce the carrier mobility, and carrier lifetime. Consequently, active carriers excited from Ge QDs under illumination injected into channel are more likely recombined by the trap, leading to a less photocurrent enhancement. In this thesis, we employ a crystallization method, solid-phase-crystallization of amorphous silicon (SPC of a-Si) annealing at 550 oC for 24 hours, to increase the grain size and reduce the numbers of grain boundaries to increase the photocurrent in TFTs incorporating Ge QDs in the top-gate dielectric.

    中文摘要……………………………………………Ⅰ 英文摘要……………………………………………Ⅱ 致謝…………………………………………………Ⅲ 目錄…………………………………………………Ⅳ 圖目錄………………………………………………Ⅴ 表目錄………………………………………………Ⅴ 第一章 簡介與研究動機……………………………1 1-1 光電晶體的發展………………………………1 1-2 研究動機………………………………………5 1-3 論文架構………………………………………8 第二章 元件結構介紹與製程說明………………14 2-1 前言……………………………………………14 2-2 量子點的形成與光特性………………………14 2-2-1量子點的光特性………………………………15 2-3 元件操作原理……………………………………17 2-4 非晶矽固相結晶法………………………………18 2-5 製程流程說明……………………………………20 第三章 元件特性量測與分析…………………………37 3-1 前言…………………………………………………37 3-2 元件電性與光特性量測……………………………37 3-2-1 ID-VD照光量測…………………………………38 3-2-2 ID-VG照光量測…………………………………40 3-3 含鍺量子點pTFT光電流反轉之機制討論…………41 第四章結論與未來展望…………………………………56 4-1結論與未來展望……………………………………56 參考文獻…………………………………………59

    [1] J. N. Shive, “A new germanium photo-resistance cell,” Phys. Rev., vol. 76, p. 575, 1949.
    [2] W. Shockley, M. Sparks, and G. K. Teal, “p-n junction transistors,” Phys. Rev., vol. 83, p.151, 1951.
    [3] J. N. Shive, “The properties of germanium phototransistors,” J. Opt. Soc. Am., vol. 43, p. 239, 1953.
    [4] S. M. Ryvkin, “Photoelectric effects in semiconductors,” Consultants Bureau, p. 376, 1964.
    [5] L. E. Tsyrlin, “Response of a phototransistor,” Sov. Phys. Semicond., vol. 11, p. 1127, 1977.
    [6] H. Kroemer, “Quasi-electric and quasi-magnetic fields in nonuniform semiconductors,” RCA Rev., vol. 18, p. 332, 1957.
    [7] H. Kroemer, “Theory of wide-gap emitter for transistors,” Proc. IRE, vol. 45, p. 1535, 1957.
    [8] C. W. Chen and T. K. Gustafson, “Characteristics of an avalanche phototransistor fabricated on a Si surface,” Appl. Phys. Lett., vol. 39, p. 161, 1981.
    [9] J. C. Campbell, A. G. Dentai, J. J. Qua and J. F. Ferguson, “Avalanche InP/InGaAs heterojunction phototransistor,” IEEE J. Quantum Electronics, vol. 19, p. 1134, 1983.
    [10] J. D. Hwang and J. K. Wu, “An a-Si:H/SiGe/Si punchthrough heterojunction phototransistors with an thin-Al film,” Thin Solid Films, vol. 517, p. 1811, 2009.
    [11] P. K. Weimer, “The TFT - a new thin-film transistor,” Proc. IEEE, vol. 50, p. 1462, 1962.
    [12] Y. Kaneko, N. Koike, K. Tsutsui and T. Tsukada, “Amorphous silicon phototransistors,” Appl. Phys. Lett., vol. 56, p. 650, 1900.
    [13] X. Liu, S. Guo. C. Zou, G. Du, Y. Wang and Y. Chang, “Punchthrough enhanced phototransistor fabricated in standard CMOS process,” IEEE Electron Dev. Lett., vol. 30, p. 272, 2009
    [14] D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron, vol. 11, p. 155, 1997.
    [15] J. A. Davis, R. Venkatesan, A. Kaloyeros, M. Beylansky, S. J. Souri, K. Banerjee, K. C. Saraswat and A. Rahman, “Interconnect limits on gigascale integration (GSI) in the 21st century,” Proc. IEEE, vol. 89, p. 305, 2001.
    [16] H. Cho, P. Kapur, and K. C. Saraswat, “Power comparison between high-speed electrical and optical interconnects for interchip communication,” IEEE J. Lightwave Technol., vol. 22, p. 2021, 2004.
    [17] J. Bautista, “Tera-scale computing – the role of interconnects in volume compute platforms,” Int. Interconnect Technol. Conf, IEEE, p. 187, 2007.
    [18] M. Berekovic, H. J. Stolberg and P. Pirsch, “Multicore system-on-chip architecture for MPEG-4 streaming video,” IEEE Trans. Circuit Syst. Video. Technol., vol. 12, p. 688, 2002.
    [19] M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron, vol. 12, p. 1699, 2007.
    [20] M. Herrscher, M. Grundmann, E. Dröge, St. Kollakowski, E. H. Böttcher and D. Bimberg, “Epitaxial lift off InGaAs/InP MSM photodetectors on Si,” Electron Lett., vol. 31, p. 1383, 1995.
    [21] R. H. Walden, “A review of recent progress in InP-based optoelectronic integrated circuit receiver front-ends,” Int. J. High Speed Electron Syst., vol. 9, p. 631, 1998.
    [22] J. E. Roth, O. Fidaner, R. K. Schaevitz, Y. H. Kuo, T. I. Kamins, J. S. Harris, Jr. and D. A. B. Miller, “Optical modulator on silicon employing germanium quantum wells,” Opt. Exp., vol. 15, p. 5851, 2007.
    [23] D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling and J. Michel, “High performance, waveguide integrated germanium photodetectors,” Opt. Exp., vol. 15, p. 3916, 2007.
    [24] S. J. Koester, J. D. Schaub, G. Dehlinger and Jack O. Chu, “Germanium on SOI infrared detectors for integrated photonic applications,” IEEE J. Sel. Topics Quantum Electronics, vol. 12, p. 1489, 2006.
    [25] H. Cho, P. Kapur, and K. C. Saraswat, “The impact of technology on power for high speed electrical and optical interconnects,” Proc. IEEE IITC, vol. 177, p. 2021, 2005.
    [26] H. K. Liou, P. Mei, U. Gennser, and E. S. Yang, “Effects of Ge concentration on SiGe oxidation behavior,” Appl. Phys. Lett., vol. 59, p. 1200, 1991.
    [27] C. Wagner, J. Electrochem. Soc., vol. 99, p. 369, 1952.
    [28] C. Wagner, J. Electrochem. Soc., vol. 103, p. 627, 1956.
    [29] M. Cao, A. Wang, and K. C. Saraswat, “Low pressure chemical vapor deposition of Si1-xGex films on SiO2,” J. Electrochem. Soc., vol. 142, p. 1566, 1995.
    [30] T. J. King and K. C. Saraswat, ”Deposition and properties of low pressure chemical vapor deposited polycrystalline silicon-germanium films,” J. Electrochem. Soc., vol. 141, p. 2235, 1994.
    [31] 賴威廷,“利用選擇性氧化單晶矽鍺形成鍺量子點之物性及電性分析”,碩士論文,國立中央大學,民國94年。
    [32] X. Wu, T. Gao, G. Siu, S. Tong and M. Bao, ” Defect-related infrared photoluminescence in Ge + -implanted SiO2 films,” Appl. Phys. Lett, vol. 74, p. 2420, 1999.
    [33] M. Zacharias and P. Fauchet, ”Blue luminescence in films containing Ge and GeO2 nanocrystals: the role of defects,” Appl. Phys. Lett., vol. 71, p. 380, 1997.
    [34] W. T. Lai and P. W. Li, ” Growth kinetics and related physical/electrical properties of Ge quantum dots formed by thermal oxidation of Si1−xGex-on-insulator,” Nanotechnology, vol. 18, p. 145402, 2007.
    [35] P. W. Li, D. M. T. Kuo, W. M. Liao and M. J. Tsai, “Optical and electronic characteristics of germanium quantum dots formed by selective oxidation of Si1−xGex /Si-on-insulator,” Jpn. J. Appl. phys., vol. 43, p. 7788, 2004.
    [36] T. Aoyama, G. Kawachi, N. Konishi, T. Suzuki, Y. Okajima, and K. Miyata, ”Crystalliz- ation of LPCVD silicon films by low temperature annealing,” J. Electrochem. Soc., vol. 141, p. 2235, 1994.
    [37] J. D. Plummer, M. D. Deal, and P. B. Griffin, “Silicon VLSI technology : fundamentals, practice and modeling,” Prentice Hall, p. 560, 2000.
    [38] A. k. Okyay, A. J. Pethe, D. Kuzum, S. Latif, D. A. B. Miller and K. C. Saraswat, “SiGe optoelectronic metal-oxide semiconductor field-effect transistor,” Opt Lett., vol. 32, p. 2022, 2007.
    [39] A. Rodriguez, M. I. Ortiz, J. Sangrador, T. Rodríguez, M. Avella, A. C.Prieto, Á. Torres, J. Jiménez, A. Kling and C. Ballesteros, “Comparative study of the luminescence of structures with Ge nanocrystals formed by dry and wet oxidation of SiGe films,” Nanotechnology, vol. 18, p. 65702, 2007.

    QR CODE
    :::