| 研究生: |
鄭義穎 Yi- ying Jheng |
|---|---|
| 論文名稱: |
結合社會網路分析與網絡結構探勘偵測網路拍賣哄抬評價之共犯群體 Combing Social Network Analysis with Web Structure Mining for detecting collusive fraud group in online auction |
| 指導教授: |
林熙禎
Shi-Jen Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理學系 Department of Information Management |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 調適性類神經模糊推論系統 、社會網路分析 、線上拍賣 、網絡結構探勘 、詐欺共犯群體 、PageRank演算法 |
| 外文關鍵詞: | PageRank Algorithm, Fraud Group Detection, K-Core, Social Network Analysis, Online Auction, Web Structure Mining, ANFIS |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著網路拍賣的普及,網路拍賣詐欺也逐漸變成犯罪的手法,其常見的手法便是不肖賣家透過拍賣網站所具有高度匿名與進入門檻低的特性,進行帳號與帳號之間相互哄抬評價,以創造高評價分數的假像來引誘買家,此種情形屢見不鮮。但之前大多數的研究僅利用社會網路分析(Social Network Analysis)來偵測哄抬評價之共犯群體,大都不能完整的偵測出整體詐欺群體的關係且非線上即時偵測。
因此,本研究針對此種詐欺共犯群體,提出一個模組化的詐欺共犯群體偵測流程,以彌補網路拍賣評價系統之不足。首先,我們利用K-Core分群演算法的概念來設計我們代理人搜尋路徑以達成可完整與立即地找出潛在的共犯群體;第二,透過本研究定義的資料前處理動作,進行資料清理;第三,使用PageRank演算法找出在群體中具有權威性與重要性的帳號,並計算其有效的指標;第四,使用Auction Fraud Rank演算法計算第二個有效的指標,此演算法是修改自PageRank演算法其目的是為了能夠讓演算法同時考量網絡結構性與帳號本身潛在的危險度;最後,我們使用調適性類神經推論系統(Adaptive-Network-based Fuzzy Inference System, ANFIS)結合社會網路分析與網路結構探勘(Web Structure Mining)來偵測群體中每個帳號的危險性。本研究使用真實案例的方式來檢驗所提出的系統架構是否可以有效幫助使用者找出潛在的共犯群體。
With the popularity of the online purchase, online auction fraud has become a kind of criminal in our daily life. The most common fraud method is that auctioneers use the characteristics of high anonymity and the lower thresholds of the e-Auctions to create multiple accounts and manipulate their reputations. In this way, they can deceive the buyer by their high reputations. But most of the previous researches focus on only using the Social Network Analysis to detect the inflated reputation behaviors of the auction fraud group. Thus, it can’t detect the relationship of whole group fraudsters and the execution process should not be Online real-time.
Therefore, the research proposes a new process which can detect collusive group: First, we use the concept of k-core clustering algorithm to design our searching path for Agent in order to capture the potential collusive group completely and immediately. Second, we define a data preprocessing to clean-up unrelated data. Third, we use the PageRank algorithm to discover authoritative and important accounts in the group and calculate the useful indicator. Four, Auction Fraud Rank algorithm, an extension to the standard PageRank algorithm, takes into account the importance of both Web structure and the potential risk of account in order to calculate the second useful indicator. Finally, we use ANFIS to combine SNA and WSN to detect the risk of each account in the group. In the research, we use real cases to validate whether the proposed system can effectively help auctioneers to find the potential collusive group.
[1] 張博欽. (2005).線上拍賣賣家信任、競標意圖與競價結果—以法、比、港、新四國 eBay 拍賣為例.未發表的碩士論文,花蓮:國立東華大學國際企業學系。
[2] 曾百川. (2005).網路詐欺犯罪歷程之質化研究.未發表的碩士論文,桃園:國立中央警察大學犯罪防治研究所。
[3] 王俊程, 邱垂鎮, & 葛煥元. (2005).以交易記錄的社會網絡結構建立線上拍賣哄抬評價的偵測指標.資訊管理學報, 12(4), 143-184。
[4] 葉懿慧. (2008).以社會網路分析方法偵測線上拍賣網站的詐欺共犯群體.未發表的碩士論文, 桃園:國立中央大學資訊管理研究所
英文部分
[5] Ba, S., Stallaert, J., Whinston, A. B., & Zhang, H. (2005). Choice of transaction channels: The effects of product characteristics on market evolution. Journal of Management Information Systems, 21(4), 173-197.
[6] Borgatti, S. What is social network analysis? Retrieved June 06, 2010, from http://www.analytictech.com/networks/whatis.htm
[7] Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine* 1. Computer Networks and ISDN Systems, 30(1-7), 107-117.
[8] Chau, D., Pandit, S., & Faloutsos, C. (2006). Detecting fraudulent personalities in networks of online auctioneers. ECML/PKDD, , 103-114.
[9] Cho, J., Garcia-Molina, H., & Page, L. (1998). Efficient crawling through URL ordering. Computer Networks and ISDN Systems, 30(1-7), 161-172.
[10] Chua, C. E. H., Wareham, J., & Robey, D. (2002). Anti-fraud mechanisms in internet auctions: The roles of markets, hierarchies and communities of practice. International Conference on Information Systems (ICIS),
[11] Chua, C. E. H., Wareham, J., & Robey, D. (2007). The role of online trading communities in managing internet auction fraud. MIS Quarterly, 31(4), 759-781.
[12] Chua, C., & Wareham, J. (2004). Fighting internet auction fraud: An assessment and proposal. Computer, 37(10), 31-37.
[13] Clarke, E. M., & Wing, J. M. (1996). Formal methods: State of the art and future directions. ACM Computing Surveys (CSUR), 28(4), 643.
[14] Conte, R., & Paolucci, M. (2003). Social cognitive factors of unfair ratings in reputation reporting systems. IEEE/WIC International Conference on Web Intelligence, 2003. WI 2003. Proceedings, 316-322.
[15] Cooley, R., Mobasher, B., & Srivastava, J. (1997). Web mining: Information and pattern discovery on the world wide web. Ninth IEEE International Conference on Tools with Artificial Intelligence, 1997. Proceedings. 558-567.
[16] Cooley, R., Mobasher, B., & Srivastava, J. (1999). Data preparation for mining world wide web browsing patterns. Knowl.Inf.Syst., 1(1), 5-32.
[17] Dellarocas, C. (2003). The digitization of word of mouth: Promise and challenges of online feedback mechanisms. Management Science, 49(10), 1407-1424.
[18] Dong, F., Shatz, S. M., & Xu, H. (2009a). Combating online in-auction fraud: Clues, techniques and challenges. Computer Science Review, 3(4), 245-258.
[19] Dong, F., Shatz, S. M., & Xu, H. (2009b). Inference of online auction shills using dempster-shafer theory. Proc. of the 6th International Conference on Information Technology: New Generations (ITNG 2009, 908-914.
[20] Everett, M. G. (1982). Graph theoretic blockings k-plexes and k-cutpoints. Journal of Mathematical Sociology, 9(75-84), 448.
[21] Everett, M. G., & Borgatti, S. P. (1993). An extension of regular colouring of graphs to digraphs, networks and hypergraphs. Social Networks, 15(23), 7-254.
[22] Everett, M. G., & Borgatti, S. P. (1998). Analyzing clique overlap. Connections, 21(1), 49-61.
[23] Freeman, L. C. (1979). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215-239.
[24] Garton, L., Haythornthwaite, C., & Wellman, B. (1999). Studying on-line social networks. Doing Internet Research: Critical Issues and Methods for Examining the Net, , 75.
[25] Hanneman, R. A., & Riddle, M. (2005). Introduction to social network methods. Riverside, CA: University of California, Riverside,
[26] He, M., Jennings, N., & Prugel-Bennett, A. (2004). An adaptive bidding agent for multiple english auctions: A neuro-fuzzy approach. 2004 IEEE International Conference on Fuzzy Systems, 2004. Proceedings, , 3
[27] Jamali, M., & Abolhassani, H. (2006). Different aspects of social network analysis. IEEE/WIC/ACM International Conference on Web Intelligence, 2006. WI 2006, 66-72.
[28] Jang, J. S. R. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics,
[29] Jenamani, M., Zhong, Y., & Bhargava, B. (2007). Cheating in online auction-towards explaining the popularity of english auction. Electronic Commerce Research and Applications, 6(1), 53-62.
[30] Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: Theory and applications Prentice Hall Upper Saddle River, NJ.
[31] Lee, C. C. (1990). Fuzzy logic in control systems: Fuzzy logic controller--part I. IEEE Transactions on Systems, Man, and Cybernetics, 20(2), 404-418.
[32] Mamdani, E., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1-13.
[33] Mislove, A., Gummadi, K. P., & Druschel, P. (2006). Exploiting social networks for internet search. BURNING, , 79.
[34] Pandit, S., Chau, D. H., Wang, S., & Faloutsos, C. (2007). Netprobe: A fast and scalable system for fraud detection in online auction networks. Proceedings of the 16th International Conference on World Wide Web, 210.
[35] Pujol, J. M., Sangüesa, R., & Delgado, J. (2002). Extracting reputation in multi agent systems by means of social network topology. Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 1, 467-474.
[36] Rubin, S., Christodorescu, M., Ganapathy, V., Giffin, J. T., Kruger, L., Wang, H., et al. (2005). An auctioning reputation system based on anomaly. Proceedings of the 12th ACM Conference on Computer and Communications Security, 279.
[37] Shaw, W. (1997). Performance standards and evaluations in IR test collections: Cluster-based retrieval models. Information Processing & Management, 33(1), 1-14.
[38] Srivastava, J., Cooley, R., Deshpande, M., & Tan, P. N. (2000). Web usage mining: Discovery and applications of usage patterns from web data. ACM SIGKDD Explorations Newsletter, 1(2), 23.
[39] Sugeno, M., & Kang, G. (1988). Structure identification of fuzzy model. Fuzzy Sets and Systems, 28(1), 15-33.
[40] Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15, 116-132.
[41] Tokeley, K. (2007). Vendor bidding on online auctions. Journal of Consumer Policy, 30(2), 137-150.
[42] Trevathan, J., & Read, W. (2007). Detecting collusive shill bidding. Information Technology, 2007. ITNG''07. Fourth International Conference on, 799-808.
[43] Trevathan, J., & Read, W. (2009). Detecting shill bidding in online english auctions. Handbook of Research on Social and Organizational Liabilities in Information Security,
[44] Tsukamoto, Y. (1979). An approach to fuzzy reasoning method. Advances in Fuzzy Set Theory and Applications, , 137-149.
[45] Wang, J. C., & Chiu, C. C. (2008). Recommending trusted online auction sellers using social network analysis. Expert Systems with Applications, 34(3), 1666-1679.
[46] Wang, J. C., & Chiu, C. (2005). Detecting online auction inflated-reputation behaviors using social network analysis. Annual Conference of the North American Association for Computational Social and Organizational Science,
[47] Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge Univ Pr.
[48] Wellman, B. (1996). For a social network analysis of computer networks: A sociological perspective on collaborative work and virtual community. Proceedings of the 1996 ACM SIGCPR/SIGMIS Conference on Computer Personnel Research, 11.
[49] Xu, H., & Cheng, Y. T. (2007). Model checking bidding behaviors in internet concurrent auctions. International Journal of Computer Systems Science & Engineering, 22(4), 179-191.
網頁部分
[50] 資策會MIC.2010年5月31日取自http://mic.iii.org.tw/aisp/
[51] 雅虎拍賣.2010年5月31日取自http://tw.bid.yahoo.com/
[52] 露天拍賣.2010年5月31日取自http://www.ruten.com.tw/
[53] The internet crime complaint center (IC3).2010年5月31日取自http://www.ic3.gov/default.aspx