跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林育全
Yu-Chuan Lin
論文名稱: 氮化鋁銦/氮化鎵高電子遷移率電晶體之製作與高頻特性分析
Fabrication and Characterization of AlInN/GaN High Electron Mobility Transistors
指導教授: 綦振瀛
Jen-Inn Chyi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 69
中文關鍵詞: 高電子遷移率電晶體氮化鋁銦二維電子氣濃度電子遷移率
外文關鍵詞: HEMT, AlInN, 2-DEG concentration, electron mobility
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主題為氮化鋁銦/氮化鋁/氮化鎵(AlInN/AlN/GaN)高電子遷移率電晶體(high electron mobility transistor, HEMT)之製作與高頻特性分析。在元件製作方面,我們製作了閘極長度為0.4 μm之Schottky gate HEMTs。其汲極電流(Idss)可達713 mA/mm,最大轉導(gm,max)可達300 mS/mm,元件崩潰電壓最高可達117 V。在Lg= 0.4 μm,Lgs= 1 μm,Lgd= 2 μm HEMT上,所量得的電流增益截止頻率(fT)可達48.9 GHz,功率增益截止頻率(fmax)可達57.3 GHz,此高頻特性與國際上其他團隊最佳之結果相當。
    此論文亦包括建立一個準確之小訊號電路模型之研究成果。我們根據磊晶片各層厚度、介電常數以及元件佈局這三項因素,建立新型的Cold FET外部電容模型,使小訊號電路參數的萃取更符合元件本身的情況,且使得模擬與實際量測的結果更為匹配。此方法亦應用於比較以三甲基鎵與三乙基鎵所成長之元件特性差異。


    This thesis aims at fabrication and characterization of high frequency characterisitcs of AlInN/AlN/GaN high electron mobility transistors (HEMTs). In this work, 0.4 μm Schottky-gate HEMTs have been fabricated on epiwafers grown by metal-organic chemical vapor deposition on Si substrates. The devices exhibit Idss of 713 mA/mm, peak transconductance of 300 mS/mm, and breakdown voltage of 117 V. High frequency measurements indicate that the devices have current gain cut-off frequency of 48.9 GHz and power gain cut-off frequency of 57.3 GHz. These results are comparable or better than the best reported results in the literature.
    We have also constructed a small signal circuit model for the devices fabricated on epiwafers grown by trimethylgallium (TMG) and triethylgallium (TEG). Based on the thickness of the epitaxial layers, dielectric constant and device layout, a new cold FET model is established for parasitic capacitance. This helps to accurately extract the small signal circuit parameters of the devices as indicated by the good match between the simulated and measured results. This parameter extraction method has been used to compare the difference between devices grown by TMG and TEG.

    論文摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 導論 1 1.1 前言 1 1.2 三族氮化物異質結構極化效應 3 1.3 氮化鎵高頻元件發展現況 5 1.4 研究動機與論文架構 8 第二章Schottky HEMTs元件製作與元件特性 9 2.1 磊晶結構設計 9 2.2 Hall量測結果、表面分析與X-射線繞射分析 10 2.3 HEMTs元件製作流程 12 2.4 本章總結 17 第三章 元件量測及分析 18 3.1 元件直流特性分析 18 3.2 元件高頻特性分析 27 3.3 本章總結 29 第四章 氮化鋁銦/氮化鎵異質結構場效電晶體之小訊號模型 30 4.1 高頻量測原理 30 4.2 小訊號電路模型分析 33 4.3 外部元件寄生參數萃取 35 4.3.1 寄生電容參數分析(pinch-off FET) 36 4.3.2 寄生電感、電阻參數分析(forward FET) 40 4.4 內部元件寄生參數萃取 42 4.5 史密斯與極座標圖分析 46 4.6 本章總結 48 第五章 結論與未來展望 49 參考文獻 51

    [1] Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, et al., "High Breakdown Voltage Schottky Rectifier Fabricated on Bulk n-GaN Substrate," Solid-State Electronics, vol. 50, pp. 1744-1747, 2006.
    [2] H. Morkoç, R. Cingolani, and B. Gil, "Polarization Effects in Nitride Semiconductor Device Structures and Performance of Modulation Doped Field Effect Transistors," Solid-State Electronics, vol. 43, pp. 1909-1927, 1999.
    [3] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, et al., "Two Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization in Undoped and Doped AlGaN/GaN Heterostructures," Journal of Applied Physics, vol. 87, pp. 334-344, 2000.
    [4] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, et al., "Two-Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-Face AlGaN/GaN Heterostructures," Journal of Applied Physics, vol. 87, pp. 334-344, 2000.
    [5] P. Altuntas, F. Lecourt, A. Cutivet, N. Defrance, E. Okada, M. Lesecq, et al., "Power Performance at 40 GHz of AlGaN/GaN High-Electron Mobility Transistors Grown by Molecular Beam Epitaxy on Si(111) Substrate," IEEE Electron Device Letters, vol. 36, pp. 303-305, 2015.
    [6] S. Bouzid-Driad, H. Maher, N. Defrance, V. Hoel, J. C. De Jaeger, M. Renvoise, et al., "AlGaN/GaN HEMTs on Silicon Substrate with 206-GHz FMAX," IEEE Electron Device Letters, vol. 34, pp. 36-38, 2013.
    [7] D. Marti, S. Tirelli, A. R. Alt, J. Roberts, and C. R. Bolognesi, "150-GHz Cutoff Frequencies and 2-W/mm Output Power at 40 GHz in a Millimeter-Wave AlGaN/GaN HEMT Technology on Silicon," IEEE Electron Device Letters, vol. 33, pp. 1372-1374, 2012.
    [8] R. C. Fitch, D. E. Walker, A. J. Green, S. E. Tetlak, J. K. Gillespie, R. D. Gilbert, et al., "Implementation of High-Power-Density X-Band AlGaN/GaN High Electron Mobility Transistors in a Millimeter-Wave Monolithic Microwave Integrated Circuit Process," IEEE Electron Device Letters, vol. 36, pp. 1004-1007, 2015.
    [9] S. Tirelli, D. Marti, H. Sun, A. R. Alt, J.-F. Carlin, N. Grandjean, et al., "Fully Passivated AlInN/GaN HEMTs with fT / fMAX of 205/220 GHz," IEEE Electron Device Letters, vol. 32, pp. 1364-1366, 2011.
    [10] M. L. Schuette, A. Ketterson, B. Song, E. Beam, T.-M. Chou, M. Pilla, et al., "Gate-Recessed Integrated E/D GaN HEMT Technology with f<sub>T</sub>/f<sub>max</sub> >300 GHz," IEEE Electron Device Letters, vol. 34, pp. 741-743, 2013.
    [11] B. P. Downey, D. J. Meyer, D. S. Katzer, J. A. Roussos, P. Ming, and G. Xiang, "SiNx/InAlN/AlN/GaN MIS-HEMTs with 10.8 THz.V Johnson Figure of Merit," IEEE Electron Device Letters, vol. 35, pp. 527-529, 2014.
    [12] D. Marti, S. Tirelli, V. Teppati, L. Lugani, J.-F. Carlin, M. Malinverni, et al., "94-GHz Large-Signal Operation of AlInN/GaN High-Electron-Mobility Transistors on Silicon with Regrown Ohmic Contacts," IEEE Electron Device Letters, vol. 36, pp. 17-19, 2015.
    [13] T. Chuan-Wei, L. Chen-Yi, L. Yi-Wei, and S. S. H. Hsu, "101-GHz InAlN/GaN HEMTs on Silicon with High Johnson's Figure-of-Merit," IEEE Transactions on Electron Devices, vol. 62, pp. 2675-2678, 2015.
    [14] S. Arulkumaran, K. Ranjan, G. I. Ng, C. M. Manoj Kumar, S. Vicknesh, S. B. Dolmanan, et al., "High-Frequency Microwave Noise Characteristics of InAlN/GaN High-Electron Mobility Transistors on Si (111) Substrate," IEEE Electron Device Letters, vol. 35, pp. 992-994, 2014.
    [15] Z. Qi, C. Wanjun, L. Shenghou, Z. Bo, F. Zhihong, C. Shujun, et al., "High Breakdown Voltage InAlN/AlN/GaN HEMTs Achieved by Schottky-Source Technology," pp. 195-198, 2013.
    [16] Y. Jiang, Q. Wang, F. Zhang, L. Li, D. Zhou, Y. Liu, et al., "Reduction of Leakage Current by O2 Plasma Treatment for Device Isolation of AlGaN/GaN Heterojunction Field-Effect Transistors," Applied Surface Science, vol. 351, pp. 1155-1160, 2015.
    [17] Y. J. Yoon, J. H. Seo, M. S. Cho, H.-S. Kang, C.-H. Won, I. M. Kang, et al., "TMAH-Based Wet Surface Pe-treatment for Reduction of Leakage Current in AlGaN/GaN MIS-HEMTs," Solid-State Electronics, vol. 124, pp. 54-57, 2016.
    [18] S. Arulkumaran, G. I. Ng, and S. Vicknesh, "Enhanced Breakdown Voltage with High Johnson's Figure-of-Merit in 0.3-µm T-gate AlGaN/GaN HEMTs on Silicon by (NH4)2Sx Treatment," IEEE Electron Device Letters, vol. 34, pp. 1364-1366, 2013.
    [19] S. L. Zhao, B. Hou, W. W. Chen, M. H. Mi, J. X. Zheng, J. C. Zhang, et al., "Analysis of the Breakdown Characterization Method in GaN-Based HEMTs," IEEE Transactions on Power Electronics, vol. 31, pp. 1517-1527, 2016.
    [20] P. Kordos, M. Mikulics, A. Fox, D. Gregusova, K. Cico, J. F. Carlin, et al., "RF Performance of InAlN/GaN HFETs and MOSHFETs with fT × LG up to 21 GHz . µm," IEEE Electron Device Letters, vol. 31, pp. 180-182, 2010.
    [21] C. Ostermaier, G. Pozzovivo, J. F. Carlin, B. Basnar, W. Schrenk, Y. Douvry, et al., "Ultrathin InAlN/AlN Barrier HEMT with High Performance in Normally Off Operation," IEEE Electron Device Letters, vol. 30, pp. 1030-1032, 2009.
    [22] K. Kunihiro, K. Kasahara, Y. Takahashi, and Y. Ohno, "Microwave Performance of 0.3-µm Gate-Length Multi-Finger AlGaN/GaN Heterojunction FETs with Minimized Current Collapse," Japanese Journal of Applied Physics, vol. 39, pp. 2431-2434, 2000.
    [23] T. Han, S. Dun, Y. Lü, G. Gu, X. Song, Y. Wang, et al., "70-nm-Gated InAlN/GaN HEMTs Grown on SiC Substrate with fT/fmax> 160 GHz," Journal of Semiconductors, vol. 37, p. 024007, 2016.
    [24] H. W. Then, L. A. Chow, S. Dasgupta, S. Gardner, M. Radosavljevic, V. R. Rao, et al., "High-K Gate Dielectric Depletion-Mode and Enhancement-Mode GaN MOS-HEMTs for Improved OFF-State Leakage and DIBL for Power Electronics and RF Applications," pp. 16.3.1-16.3.4, 2015.
    [25] S. Piotrowicz, O. Jardel, E. Chartier, R. Aubry, L. Baczkowski, M. Casbon, et al., "12W/mm with 0.15 µm InAlN/GaN HEMTs on SiC Technology for K and Ka-Bands Applications," pp. 1-3, 2014.
    [26] S. D. Nsele, L. Escotte, J. G. Tartarin, and S. Piotrowicz, "Noise Characteristics of AlInN/GaN HEMTs at Microwave Frequencies," pp. 1-4, 2013.
    [27] S. Tirelli, D. Marti, L. Lugani, J.-F. Carlin, N. Grandjean, and C. R. Bolognesi, "AlN-Capped AlInN/GaN High Electron Mobility Transistors with 4.5 W/mm Output Power at 40 GHz," Japanese Journal of Applied Physics, vol. 52, p. 08JN16, 2013.
    [28] D. M. Geum, J. H. Jang, M. S. Kim, and S. H. Shin, "75 nm T-shaped Gate for In0.17Al0.83N/GaN HEMTs with Minimal Short-Channel Effect," Electronics Letters, vol. 49, pp. 1536-1537, 2013.
    [29] Y. Yue, Z. Hu, J. Guo, B. Sensale-Rodriguez, G. Li, R. Wang, et al., "InAlN/AlN/GaN HEMTs with Regrown Ohmic Contacts and fT of 370 GHz," IEEE Electron Device Letters, vol. 33, pp. 988-990, 2012.
    [30] R. Wang, G. Li, O. Laboutin, Y. Cao, W. Johnson, G. Snider, et al., "210-GHz InAlN/GaN HEMTs with Dielectric-Free Passivation," IEEE Electron Device Letters, vol. 32, pp. 892-894, 2011.
    [31] D. S. Lee, X. Gao, S. Guo, D. Kopp, P. Fay, and T. Palacios, "300-GHz InAlN/GaN HEMTs with InGaN Back Barrier," IEEE Electron Device Letters, vol. 32, pp. 1525-1527, 2011.
    [32] K. D. Chabak, D. E. W. Jr., M. Trejo, A. Crespo, M. Kossler, J. K. Gillespie, et al., "Performance of Strained AlInN/AlN/GaN HEMTs with Si3N4 and Ultra-Thin Al2O3 Passivation," presented at the CS MANTECH, Palm Springs, California, USA, 2011.
    [33] K. D. Chabak, M. Trejo, A. Crespo, D. E. Walker, Y. Jinwei, R. Gaska, et al., "Strained AlInN/GaN HEMTs on SiC with 2.1-A/mm Output Current and 104-GHz Cutoff Frequency," IEEE Electron Device Letters, vol. 31, pp. 561-563, 2010.
    [34] R. H. Wang, P. Saunier, X. Xing, C. X. Lian, X. A. Gao, S. P. Guo, et al., "Gate-Recessed Enhancement-Mode InAlN/AlN/GaN HEMTs with 1.9-A/mm Drain Current Density and 800-mS/mm Transconductance," Ieee Electron Device Letters, vol. 31, pp. 1383-1385, Dec 2010.
    [35] F. Medjdoub, N. Herbecq, A. Linge, and M. Zegaoui, "High Frequency High Breakdown Voltage GaN Transistors," pp. 9.2.1-9.2.4, 2015.
    [36] S. Y. Liao, C. C. Lu, T. Chang, C. F. Huang, C. H. Cheng, and L. B. Chang, "Gate Length Scaling Effect on High-Electron Mobility Transistors Devices Using AlGaN/GaN and AlInN/AlN/GaN Heterostructures," Journal of Nanoscience and Nanotechnology, vol. 14, pp. 6243-6246, 2014.
    [37] H. Sun, A. R. Alt, H. Benedickter, C. R. Bolognesi, E. Feltin, J.-F. Carlin, et al., "Ultrahigh-Speed AlInN/GaN High Electron Mobility Transistors Grown on (111) High-Resistivity Silicon with FT= 143 GHz," Applied Physics Express, vol. 3, p. 094101, 2010.
    [38] G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, "A New Method for Determining the FET Small-Signal Equivalent Circuit," IEEE Transactions on Microwave Theory and Techniques, vol. 36, pp. 1151-1159, 1988.
    [39] P. M. White and R. M. Healy, "Improved Equivalent Circuit for Determination of MESFET and HEMT Parasitic Capacitances from "Coldfet" Measurements," IEEE Microwave and Guided Wave Letters, vol. 3, pp. 453-454, 1993.
    [40] J. Lu, Y. Wang, L. Ma, and Z. Yu, "A New Small-Signal Modeling and Extraction Method in AlGaN/GaN HEMTs," Solid-State Electronics, vol. 52, pp. 115-120, 2008.
    [41] M. Berroth and R. Bosch, "Broad-Band Determination of the FET Small-Signal Equivalent Circuit," IEEE Transactions on Microwave Theory and Techniques, vol. 38, pp. 891-895, 1990.
    [42] J. W. Chung, "Millimeter-wave GaN High Electron Mobility Transistors and Their Integration with Silicon Electronics," Massachusetts Institute of Technology, 2011.
    [43] C.-W. Tsou, H.-C. Kang, Y.-W. Lian, and S. S. H. Hsu, "AlGaN/GaN HEMTs on Silicon with Hybrid Schottky–Ohmic Drain for RF Applications," IEEE Transactions on Electron Devices, vol. 63, pp. 4218-4225, 2016.

    QR CODE
    :::