跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃威愷
Wei-Kai Huang
論文名稱: 多層區塊編碼之廣義空間調變
Multi-level Block-Coded Generalized Spatial Modulatio
指導教授: 魏瑞益
Ruey-Yi Wei
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 54
中文關鍵詞: 空間調變區塊編碼傳輸多樣性多輸入多輸出
外文關鍵詞: spatial modulation, block coded modulation, transmit diversity, MIMO
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種具備傳輸多樣性的全新廣義空間調變架構,稱為多層區塊編碼廣義空間調變(Multi-Level Block-Coded Generalized Spatial Modulation,MBC-GSM)。與傳統採用空時區塊碼(STBC)的空時區塊編碼空間調變(STBC-SM)架構不同,MBC-GSM 採用了多層區塊編碼調變(BCM)技術,並引入一類新型天線索引矩陣,以較高的編碼率傳送索引位元。透過設計具特定結構特性的天線索引矩陣,本方法可實現傳輸多樣性階數為二。在使用相同訊號星座的條件下,MBC-GSM 可達成優於 STBC-SM 的頻譜效率。本論文亦發展三種不同的解碼演算法,以提供不同的效能與複
    雜度折衷選擇,分別為最大似然維特比解碼、多階維特比解碼,以及低複雜度解碼器。模擬結果顯示,MBC-GSM 在相同或更高頻譜效率下,能達到優於現有 STBCSM 架構的錯誤效能。


    This paper presents a novel generalized spatial modulation (GSM) scheme with transmit diversity, termed multi level block-coded generalized spatial modulation (MBC-GSM). Unlike space-time block-coded spatial modulation (STBC-SM) schemes that rely on space-time block coding (STBC), MBC-GSM integrates multi-level block-coded modulation (BCM) with a new class of antenna-index matrices to transmit index bits at higher coding rates. The proposed scheme achieves a transmit diversity order of two by designing antenna-index matrices with specific structural properties. For a given signal constellation, MBC-GSM offers higher spectral efficiency than STBC-SM. To support various complexity-performance trade-offs, three decoding algorithms are developed: maximum-likelihood Viterbi decoding, multi-stage Viterbi decoding, and a low-complexity decoding algorithm. Simulation results demonstrate that MBC-GSM achieves superior error performance compared to existing STBC-SM schemes with equal or higher spectral efficiency.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VII 表目錄 VIII 第一章 緒論 1 第二章 MBC-GSM架構 3 第三章兩根啟用天線的天線索引矩陣 7 3.1提出的結構與期望特性 7 3.2天線索引矩陣的設計與搜尋 10 第四章 性能分析 13 第五章 解碼演算法 15 5.1以低複雜度計算的維特比演算法進行最大可能性解碼 15 5.2次佳的多階維特比解碼 18 5.3低複雜度非最大可能性解碼演算法 21 第六章 模擬結果 24 第七章 結論 34 附件一 定理一證明 35 附件二 搜尋到的天線索引矩陣 38 參考文獻 41

    [1] R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, and S. Yun, “Spatial modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2242, Jul. 2008.
    [2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: Optimal detection and performance analysis,” IEEE Commun. Lett., vol. 12, no. 8, pp. 545–547, Aug. 2008.
    [3] M. Renzo, H. Haas, and P. Grant, “Spatial modulation for multiple-antenna wireless systems: A survey,” IEEE Commun. Mag., vol. 49, no. 12, pp. 182–191, Dec. 2011.
    [4] M. Wen, B. Zheng, K. J. Kim, M. Renzo, T. A. Tsiftsis, K.-C. Chen, and N. Al-Dhahir, “A survey on spatial modulation in emerging wireless systems: Research progresses and applications,” IEEE J. Select. Areas Commun., vol. 37, pp. 1949–1972, Sep. 2019.
    [5] S. M. Alamouti, “A simple transmitter diversity scheme for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998.
    [6] E. Basar, U. Aygolu, E. Panayirci, and H. V. Poor, “Space-time block coded spatial modulation,” IEEE Trans. Commun., vol. 59, no. 3, pp. 823–832, Mar. 2011.
    [7] X. Li and L. Wang, “High rate space-time block coded spatial modulation with cyclic structure,” IEEE Commun. Lett., vol. 18, no. 4, pp. 532–535, Apr. 2014.
    [8] L. Wang, “Stacked Alamouti based spatial modulation,” IEEE Trans. Commun., vol. 67, no. 1, pp. 336–349, Jan. 2019.
    [9] A. G. Helmy, M. Di Renzo, and N. Al-Dhahir, “Enhanced-reliability cyclic generalized spatial-and-temporal modulation,” IEEE Commun. Lett., vol. 20, no. 12, pp. 2374–2377, Dec. 2016.
    [10] L. Wang and Z. Chen, “High-rate spatial modulation transmission scheme with block-orthogonal structure and block-by-block sphere decoding,” IEEE Access, vol. 8, pp. 7032–7039, 2020.
    [11] M. T. Le, V. D. Ngo, H. A. Mai, X. N. Tran, and M. Di Renzo, “Spatially modulated orthogonal space-time block codes with nonvanishing determinants,” IEEE Trans. Commun., vol. 62, no. 1, pp. 85–99, Jan. 2014.
    [12] M. T. Le, T. D. Nguyen, and V. D. Ngo, “On the combination of double space time transmit diversity with spatial modulation,” IEEE Trans. Wireless Commun., vol. 17, no. 1, pp. 170–181, Jan. 2018.
    [13] L. Wang, Z. Chen, and X. Wang, “A space-time block coded spatial modulation from (n, k) error correcting code,” IEEE Wireless Commun. Lett., vol. 3, no. 1, pp. 54–57, Feb. 2014.
    [14] L. Wang, Z. Chen, Z. Gong, and M. Wu, “Diversity-achieving quadrature spatial modulation,” IEEE Trans. Veh. Technol., vol. 66, no. 12, pp. 10764–10775, Dec. 2017.
    [15] L. Wang and Z. Chen, “Enhanced diversity-achieving quadrature spatial modulation with fast decodability,” IEEE Trans. Veh. Technol., vol. 69, no. 6, pp. 6165–6177, Jun. 2020.
    [16] C. Li, L. Wang, and G. Nie, “Quadrature spatial modulation with the fourth order transmit diversity and low-complexity sphere decoding for large-scale MIMO systems,” IEEE Trans. Veh. Technol., vol. 71, no. 8, pp. 8603–8614, Aug. 2022.
    [17] R. Y. Wei, C. W. Chang, and Y. F. Cheng, “Temporal permutations in distinct accumulated blocks of space-time block-coded spatial modulation,” IEEE Trans. Veh. Technol., vol. 73, no. 12, pp. 19240–19251, Dec. 2024.
    [18] R. Y. Wei, Y. C. Hsu, Y. L. Chen, and Y. F. Cheng, “Further results on space-time block-coded spatial modulation with permutations, ” DOI:10.10.36227/techrxiv.175303543.34239462/v1
    [19] H. Imai and S. Hirakawa, “A new multilevel coding method using error correcting codes,” IEEE Trans. Inform. Theory, vol. 23, pp. 371–376, May 1977.
    [20] S. Sayegh, “A class of optimum block codes in signal space,” IEEE Trans. Commun., vol. 30, pp. 1043–1045, Oct. 1986.
    [21] T. Kasami, T. Takata, T. Fujiwara, and S. Lin, “On multilevel block modulation codes,” IEEE Trans. Inform. Theory, vol. 37, pp. 965–975, Jul. 1991.
    [22] U. Wachsmann, R. F. H. Fischer, and J. B. Huber, “Multilevel codes: theoretical concepts and practical design rules,” IEEE Trans. Inform. Theory, vol. 45, pp. 1361–1391, Jul. 1999.
    [23] A. Wittneben, “A new bandwidth efficient transmit antenna modulation diversity scheme for linear digital modulations,” in Proc. IEEE ICC, 1993, pp. 1630–1634.
    [24] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inform. Theory, vol. 44, pp. 744–765, Mar. 1998.
    [25] T. Takata, S. Ujita, T. Kasami, and S. Lin, “Multistage decoding of multilevel block M-PSK modulation codes and its performance analysis,” IEEE Trans. Inform. Theory, vol. 39, pp. 1204–1218, Jul. 1993.
    [26] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inform. Theory, vol. 28, pp. 55–67, Jan. 1982.
    [27] M. S. Alouini and M. K. Simon, Digital Communications over Fading Channels, 2nd ed., John Wiley & Sons, 2005.
    [28] H. Jafarkhani, Space-Time Coding: Theory and Practice, Cambridge University Press, 2005.

    QR CODE
    :::