| 研究生: |
謝碩軒 Shuo-Hsien Hsieh |
|---|---|
| 論文名稱: |
用於短距530nm/850nm光纖通訊高速高功率高響應度光二極體 Short-Reach 530nm/850nm Optical Fiber Communication Photodiodes |
| 指導教授: |
許晉瑋
Jin-Wei Shi |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 波導管架構 、光偵測器 、光二極體 、矽鍺材料 、氮化鎵材料 、超晶格結構 |
| 外文關鍵詞: | Photodiodes, Photodetectors, SiGe, GaN, Waveguide, Superlattice |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究中,針對用於短距光纖通訊之光二極體做研究及製作,主要分為應用於塑膠光纖的藍綠光波段(530nm)氮化鎵光二極體的部份及應用於光纖乙太網路(850nm)的矽鍺累增光二極體的部分。
(a) 在邊耦合氮化鎵光二極體的部份。我們利用超晶格結構的設計將吸光與發光製作在同一個元件上,以達成降低製作成本及提高製程便利性,因此在量測上,分為光偵測器(吸光)及發光二極體(發光)的表現。在光偵測器的表現上,大元件(12μm×250μm)之頻寬表現為600MHz,光響應度方面0.234A/W,量子效率為72.54%,脈衝峰值電壓540mV ; 小元件(2μm×60μm)之頻寬表現為825MHz,光響應度方面0.072A/W,量子效率為22.2%,脈衝峰值電壓222mV。在發光特性的表現上,能達到70MHz (94Mbit/s)的操作速度。
(b) 在邊耦合矽鍺累增光二極體方面,操作在累增崩潰區時,能同時達到有極出色的增益頻寬-效率乘積(10GHz,1.85A/W,276%,27.6GHz)及很高峰值電壓(1.5V)。
[1]K.Kato,IEEE Trans.Microwave Theory Teeh. ,47,pp.126-1281, Jul. 1999.
[2]K.Kato, ”Ultrawide-Band/High-Frequency Photodetectors”, IEEE Trans. Microwave Theort Tech.,vol.47,pp.1396-1398,2000.
[3]J. E. Bowers and C. A. Burrus, Jr. “Ultrawide-band long-wavelength p-i-n photodetector”, J.Lightwave Technol., vol. LT-5, pp.1339-1350, 1987.pp.226-256,1999.
[4]Jasprit Singh, “Optoelectronics-An Introduction to Materials and Device”, pp.78-130, pp.253-257, 1996.
[5]K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microwave Theory Tech., vol. 45,pp. 1310–1319, Aug. 1997.
[6]K. S. Giboney, “Traveling-wave photodetectors,” Ph.D. dissertation, Dept.of Electrical and Computer Engineering, Univ. of California ,Santa Barbara, CA, 1995.
[7]J.-W. Shi and C.-K. Sun, “Design and analysis of long absorption
length traveling wave photodetector,” J. Lightwave Technol., vol. 18,pp. 2176–2187, Dec. 2000.
[8]新禾Toshiba : http://www.toshiba-taiwan.com
[9]Present State-of-the-art of Plastic Optical Fiber (POF)Components and Systems© 2004, Plastic Optical Fiber Trade Organization.
[10]Steele, Robert “High bandwidths for plastic optical fiber”,Laser Focus World,pp.32-34,January 1995.
[11]H.Schopp:”Principles and Applications of the MOST Network” , Meeting of the ITG-Fokusprojektes ITF , Fraukfurt, May11,2001.
[12]Club des Fibres Optiques Plastiques (CFOP)France:”Plastic Optical Fibres-Practical Application”,edited by J.Marcou,John Wiley & Sons,Masson,1997.
[13]O.Ziemann,H.Steinberg,P.E.Zamzow:”NewTechnologies with POF for Automotive and Building application”,Alcatel Kabel , autoelectric GmbH , May 2000.
[14]T. Yoshimura, and Y Koyamada. "Analysis of Transmission Bandwidth characteristicsof SI-POF." POF-2003 proceedings. P 119, September 15-17,2003 in Seattle.Available from Information Gatekeepers, Inc.
[15]L. Blyler, V.R. White, R. Ratagini, and M. Park. "Perfluorinated POF: out of the lab, into the real world." POF-2003 proceedings. P 16, September 15-17,2003 in Seattle.
[16]T. Ishigure, E. Nihei, and Y. Koike, “Graded-index polymer optical fiber for high speed data communication,” Appl. Opt, vol. 33, pp. 4261–4266,July 1994.
[17]T. Ishigure, M. Sato, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki,and Y. Koike, “Formation of the refractive index profile in the graded index polymer optical fiber for gigabit data transmission”, J. Lightwave Technol., vol. 15, pp. 2095–2100, Nov. 1997.
[18]M. Shatalov, A. Chitnis , D. Basak , J. W. Yang , Q. Fareed ,G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Stripe Geometry Light Emitting Diodes over Pulsed Lateral Epitaxial Overgrown GaN for Solid State White Lighting”,phys.stat.sol.188, No.1, 147–150 (2001).
[19]Seong-Ran Jeon, Young-Ho Song, Ho-Jin Jang, and Gye Mo Yang, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions”, Appl. Phys. Lett.vol78, No.21 21 MAY 2001.
[20]S.-R. Jeon, Y. H. Song, H. J. Jang, K. S. Kim, G. M. Yang,S. W. Hwang, and S. J. Son,“Buried Tunnel Contact Junctions in GaN-Based Light-Emitting Diodes”,phys. stat. sol. (a) 188, No. 1, 167–170 (2001).
[21]Seong-Ran Jeon, Chang Sok Oh, Jeon-Wook Yang,a) and Gye Mo Yanga), “GaN tunnel junction as a current aperture in a blue surface-emitting light-emitting diode”, Appl. Phys. Lett. vol 80,No. 11 18 MARCH 2002.
[22]S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole Compensation Mechanism of P-Type GaN Films”,Jpn. J. Appl. Phys. 31,1258 (1992).
[23]M. S. Minsky, M. White, and E. L. Hu,“Room-temperature photoenhanced wet etching of GaN”,Appl. Phys. Lett. 68, 1531 (1996).
[24]C. Youtsey , I. Adesida , L. T. Romano and G. Bulman, “Smooth n-type GaN surfaces by photoenhanced wet etching”,Appl. Phys. Lett. 72, 560 (1997).
[25]J. K. Sheu , Y. K. Su ,G. C. Chi ,W. C. Chen, C. Y. Chen, C. N. Huang,J. M. Hong,Y. C. Yu, C. W. Wang, and E. K. Lin,“The effect of thermal annealing on the Ni/Au contact of p-type GaN”, J. Appl. Phys. 83, 3172 (1998).
[26]Li-Chien Chen, Fu-Rong Chen, Ji-Jung Kai,Li Chang,Jin-Kuo Ho, Charng-Shyang Jong, Chien C. Chiu, Chao-Nien Huang, Chin-Yuen Chen, and Kwang-Kuo Shih,“Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN ”, J. Appl. Phys. 86, 3826 (1999).
[27]Jin-Kuo Ho , Charng-Shyang Jong, Chien C. Chiu, Chao-Nien Huang, Chin-Yuen Chen, and Kwang-Kuo Shih, “Low-resistance ohmic contacts to p-type GaN”, Appl. Phys. Lett. 74, 1275 (1999).
[28]Y. Koide,S. Yamasaki, S. Nagai, J. Umezaki, M. Koike and Masanori Murakami,“Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces”, J. Appl. Phys. 81, 1315 (1997).
[29]D. A. Stocker ,E. F. Schubert, and W. Grieshaberb, “Facet roughness analysis for InGaN/GaN lasers with cleaved facets”, Appl. Phys. Lett., Vol73, No.14 5 ,October 1998.
[30]Majid, et al., “Low power stand-by for switched-mode power supply circuit with burst mode operation”,US patent 5,812,383, Sep. 1998, Philips Electronics.
[31]Saeid Vatannia,Pak-Ho Yeung,and Crist Lu, “ A Fast Response 155-Mb/s Burst-Mode Optical Recevier for PON”, IEEE Photon. Technol . Lett .,vol.17,NO.5,May 2005,p1067-1069.
[32]http://cm2000.cm.nctu.edu.tw/news/200205015.htm
[33]B. Yang, J. D. Schaub, S. M. Csutak, D. L. Rogers, and J. C. Campbell, “10-Gb/s All-Silicon Optical Receiver,” IEEE Photon.
Technol. Lett., 15, 745-747 (2003).
[34]M. Yang, K. Rim, D. L. Rogers, J. D. Schaub, J. J. Welser, ,“A High-Speed, High-Sensitivity Silicon Lateral Trench Photodetector,”IEEE Electron Device Lett., 23, 395-397 (2002).
[35]M. K. Emsley, O. Dosunmu, and M. S. Unlu, “Silicon Substrates With Buried Distributed Bragg Reflectors for Resonant Cavity- Enhanced Optoelectronics,” IEEE J. of Sel. Topics in Quantum Electronics, 8, 709-727, (2004).
[36]G. Dehlinger, S. J. Koester, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, “High -Speed Germanium-on-SOI Lateral PIN Photodiodes, ” IEEE Photon. Technol. Lett., 16, 2547-2549 (2004).
[37]G. Dehlinger, S. J. Koester, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, “High-Speed Germanium-on-SOI Lateral PIN. [38] H. C. Lee, and B. V. Zeghbroeck, “A Novel High-Speed Silicon MSM Photodetector Operating at 830nm Wavelength” IEEE Electron Device Lett., vol. 16, pp. 175-177, May, 1995.
[39]T. Yoshimura, and Y Koyamada. "Analysis of Transmission Bandwidth characteristicsof SI-POF." POF-2003 proceedings. P 119, September 15-17,2003 in Seattle.Available from Information Gatekeepers, Inc.
[40]T. Nakata, T. Takeuchi, I. Watanabe, K. Makita, and T. Torikai, “10Gbit/s high sensitivity, low-voltage-operation avalanche photodiodes with thin InAlAs multiplication layer and waveguide structure,”Electron. Lett., vol. 36, pp. 2033–2034, Nov. 2000.
[41]A.R.Hawkins,“Silicon–indium–gallium–arsenide avalanche photode- tectors”, Ph.D. dissertation, Dept. of Electrical and Computer Engineering , Univ. of California, Santa Barbara, CA, 1998.
[42]H. Nie, K. A. Anselm, C. Lenox, P. Yuan, C. Hu, G. Kinsey, B. G.Streetman, and J. C. Campbell, “Resonant-cavity separate absorption,charge and multiplication avalanche photodiodes with high-speed and high gain-bandwidth product,” IEEE Photon. Technol. Lett., vol. 10, pp.409–411, Mar. 1998.
[43]H. Lafontaine, N. L. Rowell, S. Janz, and D.-X. Xu, “Growth of undulating SiGe layers for photodetectors at _ = 1.55 _m,” J. Appl.Phys., vol. 86, pp. 1287–1291, Aug. 1999.
[44]C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang,and X. Ren, “Back-incident SiGe–Si multiple quantum-well resonantcavity-enhanced photodetectors for 1.3-_m operation,” IEEE Photon.Technol. Lett., vol. 12, pp. 1373–1375, Oct. 2000.
[45]D. Buca, S. Winnerl, S. Lenk, C. Buchal, and D.-X. Xu, “Fast time response from Si–SiGe undulating layer supperlatices,” Appl. Phys. Lett.,vol. 80, pp. 4172–4174, June 2002.
[46]E. Quinones, S. K. Ray, K. C. Liu, and S. Banerjee, “Enhanced mobility PMOSFET’s using tensile-strained Si C layers,” IEEE Electron Device Lett., vol. 20, pp. 338–340, July 1999.
[47]X. Li, N. Li, S. Demiguel, X. Zheng, J. C. Campbell, H. H. Tan, and C. Jagadish, “A Partially Depleted Absorber Photodiode With Graded Doping Injection Regions,” IEEE Photon. Technol. Lett., 16, 2326-2328, (2004).
[48]M. K. Emsley, O. Dosunmu, and M. S. Unlu, “Silicon Substrates With Buried Distributed Bragg Reflectors for Resonant Cavity-Enhanced Optoelectronics,” IEEE J. of Sel. Topics in Quantum Electronics, 8, 709-727, (2004).
[49]G. Dehlinger, S. J. Koester, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, “High -Speed Germanium-on-SOI Lateral PIN Photodiodes, ” IEEE Photon. Technol. Lett., 16, 2547-2549 (2004).