跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝碩軒
Shuo-Hsien Hsieh
論文名稱: 用於短距530nm/850nm光纖通訊高速高功率高響應度光二極體
Short-Reach 530nm/850nm Optical Fiber Communication Photodiodes
指導教授: 許晉瑋
Jin-Wei Shi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 78
中文關鍵詞: 波導管架構光偵測器光二極體矽鍺材料氮化鎵材料超晶格結構
外文關鍵詞: Photodiodes, Photodetectors, SiGe, GaN, Waveguide, Superlattice
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究中,針對用於短距光纖通訊之光二極體做研究及製作,主要分為應用於塑膠光纖的藍綠光波段(530nm)氮化鎵光二極體的部份及應用於光纖乙太網路(850nm)的矽鍺累增光二極體的部分。
    (a) 在邊耦合氮化鎵光二極體的部份。我們利用超晶格結構的設計將吸光與發光製作在同一個元件上,以達成降低製作成本及提高製程便利性,因此在量測上,分為光偵測器(吸光)及發光二極體(發光)的表現。在光偵測器的表現上,大元件(12μm×250μm)之頻寬表現為600MHz,光響應度方面0.234A/W,量子效率為72.54%,脈衝峰值電壓540mV ; 小元件(2μm×60μm)之頻寬表現為825MHz,光響應度方面0.072A/W,量子效率為22.2%,脈衝峰值電壓222mV。在發光特性的表現上,能達到70MHz (94Mbit/s)的操作速度。
    (b) 在邊耦合矽鍺累增光二極體方面,操作在累增崩潰區時,能同時達到有極出色的增益頻寬-效率乘積(10GHz,1.85A/W,276%,27.6GHz)及很高峰值電壓(1.5V)。


    摘要…………………………………………………Ⅰ 誌謝…………………………………………………Ⅱ 目錄…………………………………………………Ⅴ 圖目錄………………………………………………Ⅸ 表目錄……………………………………………ⅩⅡ 第一章 導論…………………………………………1 §1-1.前言……………………………………………1 §1-2.各種通訊網路的進展…………………………3 §1-3.光纖通訊元件…………………………………5 §1-4.論文架構………………………………………6 第二章 光二極體之原理介紹與討論………………7 §2-1.光偵測器介紹…………………………………7 §2-2.光偵測器工作原理……………………………8 §2-3.光偵測器等效電路分析及模擬………………12 §2-4.元件頻寬限制之模擬…………………………14 第三章 邊耦合氮化鎵光二極體……………………16 §3-1.研究背景:塑膠光纖之簡介………………… 16 §3-1-1.塑膠光纖之發展趨勢與其應用……………17 §3-1-2.塑膠光纖損耗………………………………22 §3-1-3.塑膠光纖的光源……………………………23 §3-1-4.元件應用……………………………………24 §3-2.邊耦合氮化鎵光二極體的結構與製作流程…25 §3-2-1.邊耦合氮化鎵光二極體結構………………25 §3-2-2.邊耦合氮化鎵光二極體製作流程…………26 §3-2-3.試片研磨與鏡面劈裂……………34 §3-3.邊耦合氮化鎵光二極體之量測結果與討論…36 §3-3-1.光偵測器之電特性量測……………………36 ?歐姆接觸金屬之討論…………………………… 36 ?二極體電特性量測……………………………… 38 §3-3-2.光偵測器之光特性量測………………… 40 ?藍寶石雷射脈衝高頻量測系統………………… 40 ?光響應度量測…………………………………… 41 ?輸入光功率對半高寬之影響…………………… 42 ?頻率響應之表現………………………………… 46 §3-3-3.光二極體發光特性量測………………… 47 ?光二極體發光特性量測系統…………………… 47 ?操作頻寬速度及頻譜之表現…………………… 48 §3-3-4.結語……………………………………… 50 第四章 矽鍺行波式累增光二極體…………………51 §4-1.研究背景:乙太網路的演進………………… 51 §4-1-1.光纖乙太網路………………………………52 §4-1-2.元件應用……………………………………53 §4-2.邊耦合矽鍺累增光二極體的結構與製作流程54 §4-2-1.邊耦合矽鍺累增光二極體結構……………54 §4-2-2.邊耦合矽鍺累增光偵測器製作流程………56 §4-2-3.試片研磨與鏡面劈裂………………………61 §4-3.邊耦合矽鍺累增光二極體之量測結果與討論63 §4-3-1.光偵測器之電特性量測……………………63 §4-3-2.光偵測器之光特性量測……………………64 ?藍寶石雷射脈衝高頻量測系統………………… 64 ?光響應度與半高寬表現………………………… 64 ?輸入光功率對半高寬與脈衝強度之影響……… 66 ?頻率響應之表現………………………………… 67 §4-3-3.結語…………………………………………69 第五章 結論…………………………………………70 參考文獻…………………………………………… 72 著作列表…………………………………………… 78 圖目錄 ◎第一章 導論 圖1-3.1 : 光纖通訊的基本架構…………………………………… 5 ◎第二章 光二極體之介紹與原理討論 圖2-2.1 : 垂直入射型光偵測器…………………………………… 10 圖2-2.2 : 光波導式光偵測器……………………………………… 11 圖2-2.3 : 行波式光偵測器………………………………………… 11 圖2-3.1 : 金屬-絕緣體-半導體(MIS)結構等效電阻電容示意圖…12 圖2-3.2 : 邊耦合p-i-n光偵測器主動區等效電阻電容示意圖……12 圖2-4 : 微波的邊界反射示意圖…………………………………… 14 ◎第三章 邊耦合氮化鎵光二極體 圖3-1-1.1 : 塑膠光纖的結構……………………………………… 19 圖3-1-1.2 : 塑膠光纖應用於家庭區域網路……………………… 22 圖3-1-2 : PMMA材料之塑膠光纖損耗對應波長頻譜圖…………… 23 圖3-1-3.1 : 傳統之資料傳輸系統………………………………… 24 圖3-1-3.2 : 將傳輸與接收元件結合之資料傳輸系統…………… 24 圖3-2-2 : 氮化鎵光二極體製程流程圖…………………………… 32 圖4-2-3.1 : 氮化鎵光二極體切割劈裂完成示意圖……………… 34 圖4-2-3.2 : 氮化鎵光二極體俯視圖……………………………… 35 圖4-2-3.3 : 研磨及劈裂後之試片剖面…………………………… 35 圖3-3-1.1 : 不同N型金屬的電流電壓曲線…………………………37 圖3-3-1.2 : 氮化鎵光二極體在順偏時之電流表現(元件尺寸2μm×120μm) 38 圖3-3-1.3 : 氮化鎵光二極體在偏壓0V至15V時之電流表現………39 圖3-3-1.4 : 氮化鎵光二極體在偏壓0V至-60V時之電流表現…… 39 圖3-3-2.1 : 藍寶石雷射脈衝高頻量測系統架構………………… 40 圖3-3-2.2 : 不同光功率下之光電流的表現(元件尺寸12μm×250μm)41 圖3-3-2.3 : 不同光功率下之光電流的表現(元件尺寸2μm×60μm)…42 圖3-3-2.4 : 不同光功率下半高寬的表現(元件尺寸12μm×250μm)…43 圖3-3-2.5 : 不同光功率下半高寬的表現(元件尺寸2μm×60μm)……43 圖3-3-2.6 : 不同偏壓下半高寬的表現(元件尺寸12μm×250μm)……44 圖3-3-2.7 : 不同偏壓下半高寬的表現(元件尺寸2μm×60μm)………44 圖3-3-2.8 : 不同光功率下正規化脈衝強度(元件尺寸12μm×250μm)45 圖3-3-2.9 : 不同光功率下正規化脈衝強度(元件尺寸2μm×60μm)…45 圖3-3-2.10 : 不同功率下頻率響應圖(元件尺寸12μm×250μm)…… 46 圖3-3-2.11 : 不同功率下頻率響應圖(元件尺寸2μm×60μm)……… 47 圖3-3-3.1 : 光二極體發光特性量測系統……………………………48 圖3-3-3.2 : 發光二極體之頻率響應圖(插圖為其頻譜表現)………49 圖3-3-3.3 : 發光二極體發光區域示意圖……………………………49 ◎第四章 矽鍺行波式累增光二極體 圖4-1-2 : 氟化樹脂之塑膠光纖損耗對應波長頻譜圖………………53 圖4-2-1 : 矽鍺行波式累增光二極體能帶圖…………………………55 圖4-2-2 : 矽在撞擊離子化時產生之載子示意圖……………………56 圖4-2-2 : 矽鍺累增光二極體製程流程圖……………………………59 圖4-2-3.1 : 矽鍺累增光二極體切割劈裂完成示意圖………………62 圖4-2-3.2 : 矽鍺累增光二極體俯視圖………………………………62 圖4-3-1.1 : 矽鍺累增光二極體在偏壓0V至15V時之電流表現…… 63 圖4-3-1.2 : 矽鍺累增光二極體在偏壓0V至-15V時之電流表現……64 圖4-3-2.1 : 不同偏壓下之光電流與半高寬的表現…………………65 圖4-3-2.2 : 不同偏壓下之暗電流與總電流的表現…………………65 圖4-3-2.3 : 不同光功率下半高寬與脈衝強度的表現………………66 圖4-3-2.4 : 不同光功率下脈衝響應的表現(0.225mW、2mW)………67 圖4-3-2.5 : 矽鍺累增光二極體在光功率0.225mW下頻率響應圖… 68 圖4-3-2.6 : 矽鍺累增光二極體在光功率2mW下頻率響應圖……… 68 圖4-3-2.7 : 矽鍺光二極體之脈衝及頻率響應(0.225mW& -25V)… 69 表目錄 ◎第二章 光二極體之介紹與原理討論 表2-3 : 邊耦合p-i-n光偵測器等效電阻電容列表………………… 13 ◎第三章 邊耦合氮化鎵光二極體 表3-2-1 : 氮化鎵行波式光二極體結構………………………………26 表3-2-2 : 氮化鎵與氮化矽乾式蝕刻條件……………………………30 表3-3-1 : 用於氮化鎵上之歐姆接觸金屬之比較……………………37 ◎第四章 矽鍺行波式累增光二極體 表4-2-1 : 矽鍺行波式累增光二極體結構……………………………55 表4-2-2 : 矽乾式蝕刻條件……………………………………………57

    [1]K.Kato,IEEE Trans.Microwave Theory Teeh. ,47,pp.126-1281, Jul. 1999.
    [2]K.Kato, ”Ultrawide-Band/High-Frequency Photodetectors”, IEEE Trans. Microwave Theort Tech.,vol.47,pp.1396-1398,2000.
    [3]J. E. Bowers and C. A. Burrus, Jr. “Ultrawide-band long-wavelength p-i-n photodetector”, J.Lightwave Technol., vol. LT-5, pp.1339-1350, 1987.pp.226-256,1999.
    [4]Jasprit Singh, “Optoelectronics-An Introduction to Materials and Device”, pp.78-130, pp.253-257, 1996.
    [5]K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microwave Theory Tech., vol. 45,pp. 1310–1319, Aug. 1997.
    [6]K. S. Giboney, “Traveling-wave photodetectors,” Ph.D. dissertation, Dept.of Electrical and Computer Engineering, Univ. of California ,Santa Barbara, CA, 1995.
    [7]J.-W. Shi and C.-K. Sun, “Design and analysis of long absorption
    length traveling wave photodetector,” J. Lightwave Technol., vol. 18,pp. 2176–2187, Dec. 2000.
    [8]新禾Toshiba : http://www.toshiba-taiwan.com
    [9]Present State-of-the-art of Plastic Optical Fiber (POF)Components and Systems© 2004, Plastic Optical Fiber Trade Organization.
    [10]Steele, Robert “High bandwidths for plastic optical fiber”,Laser Focus World,pp.32-34,January 1995.
    [11]H.Schopp:”Principles and Applications of the MOST Network” , Meeting of the ITG-Fokusprojektes ITF , Fraukfurt, May11,2001.
    [12]Club des Fibres Optiques Plastiques (CFOP)France:”Plastic Optical Fibres-Practical Application”,edited by J.Marcou,John Wiley & Sons,Masson,1997.
    [13]O.Ziemann,H.Steinberg,P.E.Zamzow:”NewTechnologies with POF for Automotive and Building application”,Alcatel Kabel , autoelectric GmbH , May 2000.
    [14]T. Yoshimura, and Y Koyamada. "Analysis of Transmission Bandwidth characteristicsof SI-POF." POF-2003 proceedings. P 119, September 15-17,2003 in Seattle.Available from Information Gatekeepers, Inc.
    [15]L. Blyler, V.R. White, R. Ratagini, and M. Park. "Perfluorinated POF: out of the lab, into the real world." POF-2003 proceedings. P 16, September 15-17,2003 in Seattle.
    [16]T. Ishigure, E. Nihei, and Y. Koike, “Graded-index polymer optical fiber for high speed data communication,” Appl. Opt, vol. 33, pp. 4261–4266,July 1994.
    [17]T. Ishigure, M. Sato, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki,and Y. Koike, “Formation of the refractive index profile in the graded index polymer optical fiber for gigabit data transmission”, J. Lightwave Technol., vol. 15, pp. 2095–2100, Nov. 1997.
    [18]M. Shatalov, A. Chitnis , D. Basak , J. W. Yang , Q. Fareed ,G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Stripe Geometry Light Emitting Diodes over Pulsed Lateral Epitaxial Overgrown GaN for Solid State White Lighting”,phys.stat.sol.188, No.1, 147–150 (2001).
    [19]Seong-Ran Jeon, Young-Ho Song, Ho-Jin Jang, and Gye Mo Yang, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions”, Appl. Phys. Lett.vol78, No.21 21 MAY 2001.
    [20]S.-R. Jeon, Y. H. Song, H. J. Jang, K. S. Kim, G. M. Yang,S. W. Hwang, and S. J. Son,“Buried Tunnel Contact Junctions in GaN-Based Light-Emitting Diodes”,phys. stat. sol. (a) 188, No. 1, 167–170 (2001).
    [21]Seong-Ran Jeon, Chang Sok Oh, Jeon-Wook Yang,a) and Gye Mo Yanga), “GaN tunnel junction as a current aperture in a blue surface-emitting light-emitting diode”, Appl. Phys. Lett. vol 80,No. 11 18 MARCH 2002.
    [22]S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole Compensation Mechanism of P-Type GaN Films”,Jpn. J. Appl. Phys. 31,1258 (1992).
    [23]M. S. Minsky, M. White, and E. L. Hu,“Room-temperature photoenhanced wet etching of GaN”,Appl. Phys. Lett. 68, 1531 (1996).
    [24]C. Youtsey , I. Adesida , L. T. Romano and G. Bulman, “Smooth n-type GaN surfaces by photoenhanced wet etching”,Appl. Phys. Lett. 72, 560 (1997).
    [25]J. K. Sheu , Y. K. Su ,G. C. Chi ,W. C. Chen, C. Y. Chen, C. N. Huang,J. M. Hong,Y. C. Yu, C. W. Wang, and E. K. Lin,“The effect of thermal annealing on the Ni/Au contact of p-type GaN”, J. Appl. Phys. 83, 3172 (1998).
    [26]Li-Chien Chen, Fu-Rong Chen, Ji-Jung Kai,Li Chang,Jin-Kuo Ho, Charng-Shyang Jong, Chien C. Chiu, Chao-Nien Huang, Chin-Yuen Chen, and Kwang-Kuo Shih,“Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN ”, J. Appl. Phys. 86, 3826 (1999).
    [27]Jin-Kuo Ho , Charng-Shyang Jong, Chien C. Chiu, Chao-Nien Huang, Chin-Yuen Chen, and Kwang-Kuo Shih, “Low-resistance ohmic contacts to p-type GaN”, Appl. Phys. Lett. 74, 1275 (1999).
    [28]Y. Koide,S. Yamasaki, S. Nagai, J. Umezaki, M. Koike and Masanori Murakami,“Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces”, J. Appl. Phys. 81, 1315 (1997).
    [29]D. A. Stocker ,E. F. Schubert, and W. Grieshaberb, “Facet roughness analysis for InGaN/GaN lasers with cleaved facets”, Appl. Phys. Lett., Vol73, No.14 5 ,October 1998.
    [30]Majid, et al., “Low power stand-by for switched-mode power supply circuit with burst mode operation”,US patent 5,812,383, Sep. 1998, Philips Electronics.
    [31]Saeid Vatannia,Pak-Ho Yeung,and Crist Lu, “ A Fast Response 155-Mb/s Burst-Mode Optical Recevier for PON”, IEEE Photon. Technol . Lett .,vol.17,NO.5,May 2005,p1067-1069.
    [32]http://cm2000.cm.nctu.edu.tw/news/200205015.htm
    [33]B. Yang, J. D. Schaub, S. M. Csutak, D. L. Rogers, and J. C. Campbell, “10-Gb/s All-Silicon Optical Receiver,” IEEE Photon.
    Technol. Lett., 15, 745-747 (2003).
    [34]M. Yang, K. Rim, D. L. Rogers, J. D. Schaub, J. J. Welser, ,“A High-Speed, High-Sensitivity Silicon Lateral Trench Photodetector,”IEEE Electron Device Lett., 23, 395-397 (2002).
    [35]M. K. Emsley, O. Dosunmu, and M. S. Unlu, “Silicon Substrates With Buried Distributed Bragg Reflectors for Resonant Cavity- Enhanced Optoelectronics,” IEEE J. of Sel. Topics in Quantum Electronics, 8, 709-727, (2004).
    [36]G. Dehlinger, S. J. Koester, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, “High -Speed Germanium-on-SOI Lateral PIN Photodiodes, ” IEEE Photon. Technol. Lett., 16, 2547-2549 (2004).
    [37]G. Dehlinger, S. J. Koester, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, “High-Speed Germanium-on-SOI Lateral PIN. [38] H. C. Lee, and B. V. Zeghbroeck, “A Novel High-Speed Silicon MSM Photodetector Operating at 830nm Wavelength” IEEE Electron Device Lett., vol. 16, pp. 175-177, May, 1995.
    [39]T. Yoshimura, and Y Koyamada. "Analysis of Transmission Bandwidth characteristicsof SI-POF." POF-2003 proceedings. P 119, September 15-17,2003 in Seattle.Available from Information Gatekeepers, Inc.
    [40]T. Nakata, T. Takeuchi, I. Watanabe, K. Makita, and T. Torikai, “10Gbit/s high sensitivity, low-voltage-operation avalanche photodiodes with thin InAlAs multiplication layer and waveguide structure,”Electron. Lett., vol. 36, pp. 2033–2034, Nov. 2000.
    [41]A.R.Hawkins,“Silicon–indium–gallium–arsenide avalanche photode- tectors”, Ph.D. dissertation, Dept. of Electrical and Computer Engineering , Univ. of California, Santa Barbara, CA, 1998.
    [42]H. Nie, K. A. Anselm, C. Lenox, P. Yuan, C. Hu, G. Kinsey, B. G.Streetman, and J. C. Campbell, “Resonant-cavity separate absorption,charge and multiplication avalanche photodiodes with high-speed and high gain-bandwidth product,” IEEE Photon. Technol. Lett., vol. 10, pp.409–411, Mar. 1998.
    [43]H. Lafontaine, N. L. Rowell, S. Janz, and D.-X. Xu, “Growth of undulating SiGe layers for photodetectors at _ = 1.55 _m,” J. Appl.Phys., vol. 86, pp. 1287–1291, Aug. 1999.
    [44]C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang,and X. Ren, “Back-incident SiGe–Si multiple quantum-well resonantcavity-enhanced photodetectors for 1.3-_m operation,” IEEE Photon.Technol. Lett., vol. 12, pp. 1373–1375, Oct. 2000.
    [45]D. Buca, S. Winnerl, S. Lenk, C. Buchal, and D.-X. Xu, “Fast time response from Si–SiGe undulating layer supperlatices,” Appl. Phys. Lett.,vol. 80, pp. 4172–4174, June 2002.
    [46]E. Quinones, S. K. Ray, K. C. Liu, and S. Banerjee, “Enhanced mobility PMOSFET’s using tensile-strained Si C layers,” IEEE Electron Device Lett., vol. 20, pp. 338–340, July 1999.
    [47]X. Li, N. Li, S. Demiguel, X. Zheng, J. C. Campbell, H. H. Tan, and C. Jagadish, “A Partially Depleted Absorber Photodiode With Graded Doping Injection Regions,” IEEE Photon. Technol. Lett., 16, 2326-2328, (2004).
    [48]M. K. Emsley, O. Dosunmu, and M. S. Unlu, “Silicon Substrates With Buried Distributed Bragg Reflectors for Resonant Cavity-Enhanced Optoelectronics,” IEEE J. of Sel. Topics in Quantum Electronics, 8, 709-727, (2004).
    [49]G. Dehlinger, S. J. Koester, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, “High -Speed Germanium-on-SOI Lateral PIN Photodiodes, ” IEEE Photon. Technol. Lett., 16, 2547-2549 (2004).

    QR CODE
    :::