跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳政益
Cheng-Yi Wu
論文名稱: 應用8D手法及QC七大手法進行客訴改善案例之研究-IC載板產業為例
Applying 8D & QC Techniques To Solve The Customer Complain – A Case Study Of IC Carrier Industry
指導教授: 陳振明
Jen-Ming Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理研究所在職專班
Executive Master of Industrial Management
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 65
中文關鍵詞: 載板8D手法QC七大手法客訴
外文關鍵詞: 8D, Complain
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體技術的快速發展,IC載板成為電子產品微型化和高效能化的重要基礎,廣泛應用於高效能運算、車載電子、消費性電子等領域;然而,IC載板的生產過程涉及多種高精度製程技術,品質控管極具挑戰性。其中,盲孔品質問題是最常見且最棘手的客訴類型,因其缺陷難以在廠內檢測發現,往往是在客戶端的熱製程或終端測試才顯現異常,造成高額品質成本與客戶信任危機。為解決此類問題,本研究透過8D問題解決方法與QC七大手法,對IC載板產業中的U公司進行實際案例分析,探討如何有效降低盲孔底部裂痕的發生率,提升品質管理能力,並建立系統化的客訴改善流程。
    本研究以U公司的客訴案例為基礎,詳細記錄8D手法如何應用於客戶抱怨處理;首先,研究團隊透過D1至D3步驟(建立團隊、問題描述、暫時性對策),迅速組織跨部門專家團隊,分析異常批次的IC載板,並利用5W2H問題分析法探索潛在風險;同時,透過可靠度測試、聚焦離子束顯微鏡分析及能量色散X光光譜等手段,驗證問題發生的根本原因,發現化學銅沉積厚度不足、盲孔底部氧化等製程缺陷是裂痕形成的主因;接著,根據D4至D6步驟(找出根本原因、擬定對策、執行與驗證),制定化銅製程參數優化、盲孔雷射鑽孔流程改善等措施,並透過管制圖、魚骨圖等QC工具進行數據監控,確保改善方案有效執行;最後,在D7至D8步驟(預防再發、團隊表彰)中,研究團隊透過標準作業程序更新、製程風險評估等機制,確保改進措施能夠長期維持,並進一步降低未來客訴發生的可能性。
    研究結果顯示,透過8D手法與QC七大手法的整合應用,U公司成功解決盲孔底部裂痕,並有效縮短客訴處理時間,提高客戶滿意度;此外,本研究亦提供一個標準化問題解決流程,可作為IC載板產業應對類似品質問題的參考模型;未來,IC載板製造商可進一步結合AI智能檢測、機器學習分析製程數據等技術,提升異常預測與防範能力,從根本上減少品質缺陷。本研究證明,透過系統化的問題解決架構與品質管理工具的應用,企業能夠更有效地應對客訴問題,提升整體競爭力,並在高度競爭的半導體產業中保持領先地位。


    With the rapid advancement of semiconductor technology, IC carrier have become a crucial foundation for the miniaturization and high-performance capabilities of electronic products. They are widely used in high-performance computing (HPC), automotive electronics, and consumer electronics. However, the production of IC carrier involves multiple high-precision manufacturing processes, making quality control highly challenging. Among the various quality issues, via quality defects are the most common and difficult customer complaints to handle. These defects are often undetectable during in-house inspections and only become apparent during thermal processes or final testing on the client side, leading to high quality costs and customer trust crises. To address these issues, this study applies the 8D problem-solving methodology and the Seven Basic QC Tools to conduct a case study on Company U in the IC carrier industry. The research aims to explore effective strategies to reduce the occurrence of via bottom cracks, enhance quality management capabilities, and establish a systematic approach to customer complaint resolution.
    This study is based on a customer complaint case from Company U and documents in detail how the 8D methodology was applied to handle customer issues. First, through the D1 toD3 steps(team formation, problem description, and interim containment actions), a cross-functional expert team was quickly assembled to analyze the defective batches of IC substrates. The team employed the 5W2H problem analysis method to identify potential risks. Additionally, reliability testing, focused ion beam (FIB) analysis, and energy-dispersive X-ray spectroscopy (EDS) were conducted to verify the root causes of the defects. The findings revealed that insufficient chemical copper deposition and oxidation at the via bottom were the primary reasons for crack formation. Subsequently, following the D4 to D6 steps (identifying root causes, developing corrective actions, and implementing & validating solutions), the study proposed optimization of chemical copper process parameters and improvements in the laser via drilling process. These corrective actions were monitored using control charts, Ishikawa diagrams (fishbone diagrams), and Pareto charts, ensuring the effectiveness of the implemented solutions. Finally, in the D7 to D8 steps (prevent recurrence and recognize team efforts), the team ensured the sustainability of these improvements by updating standard operating procedures (SOPs), conducting failure mode and effects analysis (FMEA), and providing employee training, further minimizing the likelihood of future customer complaints.
    The results demonstrate that integrating the 8D methodology with the Seven QC Tools enabled Company U to successfully resolve via bottom crack issues, significantly reduce
    customer complaint handling time, and improve customer satisfaction. Additionally, this study provides a standardized problem-solving framework, which can serve as a reference model for the IC carrier industry in addressing similar quality challenges. In the future, IC carrier manufacturers can further integrate AI-based intelligent inspection and machine learning-driven process data analysis to enhance defect prediction and prevention capabilities, ultimately reducing quality issues at the source. This research confirms that by applying a systematic problem-solving approach and quality management tools, companies can respond more effectively to customer complaints, enhance overall competitiveness, and maintain a leading position in the highly competitive semiconductor industry.

    中文摘要...................................................i ABSTRACT..................................................ii 誌謝......................................................iv 目錄.......................................................v 圖目錄...................................................vii 表目錄.....................................................1 第一章 緒論................................................2 1.1 研究背景...............................................2 1.2 研究產業簡介............................................2 1.2.1 IC Carrier的主要類型.................................2 1.2.2 IC Carrier產業現狀與發展趨勢..........................4 1.3 研究動機...............................................5 1.4 研究目的...............................................6 1.5 研究架構...............................................6 第二章 文獻探討.............................................7 2.1 8D方法相關文獻探討......................................7 2.2 QC七大手法相關文獻探討...................................8 2.3 客戶抱怨處理文獻探討....................................13 第三章 研究方法............................................14 3.1 研究計畫..............................................14 3.2 D1-建立團隊...........................................15 3.3 D2-現況把握...........................................15 3.4 D3-暫時防堵對策.......................................16 3.5 D4-真因查找...........................................17 3.6 D5-對策擬定...........................................18 3.7 D6-執行並驗證.........................................19 3.8 D7-預防再發...........................................20 3.9 D8-表彰團隊...........................................21 第四章 個案研究............................................23 4.1 個案公司背景介紹.......................................23 4.2 IC載板流程與各流程功能說明..............................23 4.3 8D應用研究個案.........................................26 4.3.1 D1-解決問題團隊成立.................................27 4.3.2 D2-問題描述與現況把握................................28 4.3.3 D3-擬定暫時性防杜措施................................29 4.3.4 D4-問題原因分析.....................................31 4.3.5 D5-對策擬定與執行...................................43 4.3.6 D6-效果確認.........................................44 4.3.7 D7-預防再發對策.....................................46 4.3.8 D8-表彰團隊.........................................47 第五章 結論與建議..........................................48 5.1 研究結論..............................................48 5.2 後續研究建議...........................................49 參考文獻..................................................51

    1.周昊廷(2024)。應用8D與QC手法進行印刷電路板廠的交貨流程改善-以T公司為例。健行科技大學。臺灣博碩士論文知識加值系統。
    2.林頡(2024)。以客訴8D方法論改善製程品質-以微小晶片接近感知器為例。逢甲大學。臺灣博碩士論文知識加值系統。
    3.張國昌(2011)。品質改善的工具與方法。
    4.莊明峰(2023)。運用8D與QC手法於電子廠設備預防保養改善-以A公司為例。健行科技大學。臺灣博碩士論文知識加值系統。
    5.温玉帆(2015)。應用實驗計畫法-提升垂直電漿機在IC載板上清潔能力之研究。國立中央大學。
    6.黃大維(2023)。運用8D手法於客訴異常-以F公司為例。國立高雄科技大學。臺灣博碩士論文知識加值系統。
    7.黃順意(2013)。應用福特8D解決客訴之個案研究。逢甲大學。臺灣博碩士論文知識加值系統。
    8.劉東聖(2020)。以8D與QC七大手法優化銲線製程-以半導體封裝廠為例。國立高雄科技大學。臺灣博碩士論文知識加值系統。
    9.蔡政融(2023)。應用8D方法於被動元件廠之品質客訴處理。國立高雄科技大學。臺灣博碩士論文知識加值系統。高雄市。
    10.蔣偉紹(2022)。以8D問題解決法與QC七大方法改善IC散熱片良率-以SM公司為例。國立高雄科技大學。臺灣博碩士論文知識加值系統。
    11.蕭傳議(2005)。IC載板的發展現況。電子與材料雜誌,25,63-69。
    12.Chebat, J. C., Davidow, M., & Codjovi, I. (2005).Silent Voices:Why Some Dissatisfied Consumers Fail to Complain. Journal of Service Research,7(4),328-342.
    13.Coccia,M.(2017).The Fishbone Diagram to Identify, Systematize and Analyze the Sources of General Purpose Technologies. Journal of Social and Administrative Sciences,4(4),291-303.
    14.Company, F. M. (1987). 8D Problem Solving Methodology Manual. Ford Motor Company.
    15.Fornell, C., & Wernerfelt, B. (1987). Defensive Marketing Strategy by Customer Complaint Management: A Theoretical Analysis. Journal of Marketing Research, 24(4), 337-346.
    16.Friendly, M., & Denis, D. J. (2005). The Early Origins and Development of the Scatterplot. Journal of the History of the Behavioral Sciences, 41(2), 103-130.
    17.Gijo, E. V., & Scaria, J. (2010). Process improvement through Six Sigma with beta correction: A case study of manufacturing company. The TQM Journal, 22(1), 56-72.
    18.Gruber, T., Szmigin, I., & Voss, R. (2009). Handling Customer Complaints Effectively: A Comparison of the Value Maps of Female and Male Complainants. Managing Service Quality, 19(6), 636-656.
    19.Ishikawa, K. (1985). What Is Total Quality Control? The Japanese Way. Prentice Hall.
    20.Johnston, R. (2001). Linking Complaint Management to Profit. International Journal of Service Industry Management, 12(1), 60-69.
    21.Montgomery, D. C. (2019). Introduction to Statistical Quality Control. Wiley.
    22.Sethi, A. S., Singh, K., & Singh, M. (2020). Green Manufacturing: Detailed Literature Review and Pareto Analysis. International Journal of Productivity and Quality Management, 1(1), 1-22.
    23.Tax, S. S., Brown, S. W., & Chandrashekaran, M. (1998). Customer Evaluations of Service Complaint Experiences: Implications for Relationship Marketing. Journal of Marketing, 62(2), 60-76.
    24.http://www.materialsnet.com.tw
    25.https://www.pcbmay.com/ic-substrate/
    26.https://www.infineon.com/cms/en/about-infineon/press/market-news/2017/INFPMM201707-064.html
    27.https://blog.csdn.net/MissMango0820/article/details/129135162
    28.https://acadeck.com/?p=511
    29.https://mymkc.com/
    30.http://www.testcenter.xin/About.aspx?ClassID=21
    31.https://www.istgroup.com/tw/
    32.https://hdl.handle.net/11296/wn9fkm
    33.https://hdl.handle.net/11296/r26eye
    34.https://hdl.handle.net/11296/qwmhwa
    35.https://hdl.handle.net/11296/s7r9ez
    36.https://hdl.handle.net/11296/6v8sxm
    37.https://hdl.handle.net/11296/cwca8z
    38.https://hdl.handle.net/11296/j74wm6
    39.https://hdl.handle.net/11296/9d27h5
    40.https://doi.org/10.1177/1094670504273965
    41.https://ideas.repec.org/a/rss/josass/1704.html
    42.https://doi.org/10.1108/17542731011009620
    43.https://www.cdc.gov.tw/Uploads/files/201212/1ba7e969-e50e-4efd-917f-49f66fecd61d.pdf

    QR CODE
    :::