跳到主要內容

簡易檢索 / 詳目顯示

研究生: 諶貴花
Qui-Hua Zhan
論文名稱: 摻鎂鈮酸鋰浮點式熔區熱流現象之探討
指導教授: 陳志臣
Jyh-Chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 76
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 態、熔區界面及溫度等各項參值隨不同之添加量及外加功率之變化。
    在熔解之過程中,我們發現純鈮酸鋰從熔解初期至熔區崩潰前,
    熔區均呈現穩態之熱張力對流,而摻鎂鈮酸鋰在氧化鎂添加量大於
    1mol%以後,熔區開始產生非穩態之振盪性熱張力對流。
    熔區表面溫度之振盪頻率隨功率、馬諾哥尼數Ma1、熔區長度及
    普蘭度數之增加而下降。在同一普蘭度數下,長徑比越大臨界馬諾哥
    尼數Ma2c越低熔區越易引發非穩態之振盪。熔區之幾何外型與熔區振
    盪之引發有關。
    普蘭度數、密度差與靜龐德數隨著氧化鎂添加量而改變熔區物理
    性質,使熔區外型隨功率之變化有很大的不同,進而影響熔區之溫
    度、流場及界面,而LHPG 之加熱特性,也使得熔區之加熱量隨外型
    而變。


    摘要 ----------------------------------------------------------------------I 誌謝 ---------------------------------------------------------------------II 目錄 --------------------------------------------------------------------- III 表目錄 ------------------------------------------------------------------ V 圖目錄 ------------------------------------------------------------------ VI 符號說明 --------------------------------------------------------------- X 第一章 緒論 ------------------------------------------------------------ 1 1-1 前言 ----------------------------------------------------------------------- 1 1-2 LHPG 熔區流場型態 ----------------------------------------------2 1-2-1 熔區之熱張力對流 ----------------------------------------------- 2 1-2-2 熔區之表面溫度 ----------------------------------------------- 5 1-2-3 熔區外型 ----------------------------------------------------------- 5 1-2-4 固液界面 ----------------------------------------------------------- 6 1-3 添加氧化鎂對鈮酸鋰之影響 ----------------------------------------- 7 1-3-1 Prandtl Number ----------------------------------------------- 8 1-3-2 Bond Number ----------------------------------------------- 8 1-4 研究動機及目的 ----------------------------------------------------------- 9 第二章 實驗設備及材料--------------------------------------------- 10 2-1 實驗設備 ------------------------------------------------------------------ 10 2-2 光學理論 ------------------------------------------------------------------ 1 2 2-3 實驗材料 ------------------------------------------------------------------ 1 3 IV 2-4 實驗方法 ------------------------------------------------------------------ 14 第三章 結果與討論 ----------------------------------------------------15 3-1 熔區流場型態 ------------------------------------------------------------ 1 5 3-1-1 穩態之熱張力對流---純鈮酸鋰之熔解 --------------------- 15 3-1-2 非穩態之熱張力對流---摻鎂鈮酸鋰之熔解 --------------- 19 3-2 摻鎂鈮酸鋰之熔解 --------------------------------------------------- -- 23 3-2-1 1mol%摻鎂鈮酸鋰 --------------------------------------------- 23 3-2-2 3mol%摻鎂鈮酸鋰 --------------------------------------------- 26 3-2-3 5mol%摻鎂鈮酸鋰 --------------------------------------------- 27 3-2-4 7mol%摻鎂鈮酸鋰 --------------------------------------------- 28 3-3 純鈮酸鋰與摻鎂鈮酸鋰之比較 -------------------------------------- - 29 第四章 結論 ------------------------------------------------------------- 31 參考文獻 ------------------------------------------------------------------- 33

    [1] P. Zhang, Z. yin, L. L. Wang, S. N. Zhu and M. S. Zhang, Photorefractive effect in
    periodically poled lithium niobate and lithium tantalate and in MgO-doped lithium
    niobate, J. Krn. Phy. Society 32 (1998) S450.
    [2] M. Nakamura, M. Sugihara and M. Kotoh, Quasi-phase-matched optical parametric
    oscillator using periodically poled MgO-doped LiNbO3 crystal, Jpn. J. Appl. Phys. 38
    (1999) L1234 (2).
    [3] 賴彥志,雜質與組成對鈮酸鋰晶纖生長以及結構之影響,國立中央大學機械
    工程研究所博士論文,民國89 年。
    [4] Y. J. Lai, J. C. Chen and K. C. Liao, Investigations of ferroelectric domain structures
    in the MgO:LiNbO3 fibers by LHPG, J. Crystal Growth 198/199 (1999) 531.
    [5] A. Brenier, G. Foulon, M. ferriol and G. Boulon, The laser-heated-pedestal growth of
    LiNbO3:MgO crystal fibers with ferroelectric domain inversion by in situ electric field
    poling, J. Phys. D: Appl. Phys. 30 (1997) L37.
    [6] T. Hibiya, S. Nakamura and T. Azami and Maragoni flow of molten silicon, Acta
    Astronautica 48 2-3 (2001) 71.
    [7] R. Velten, D. Schewabe and A. Scharmann, The periodic instability of the
    thermocapillary convection in cylindrical liquid bridges, Phys. Fluids A 3 2 (1991)
    267.
    [8] J.C. Chen and G. H. Chin, Linear stability analysis of thermocapillary convection in
    the floating zone, J. Crystal Growth 154 (1995) 98.
    [9] C.H. Chun, Experiments on steady and oscillatory temperature distribution in a
    34
    floating zone due to the Marangoni convection, Acta Astronautica 7 (1980) 497.
    [10] Y.K. Yang and S. Kou, Temperature oscillation in a tin liquid bridge and critical
    Marangoni number dependency on Prandtl number, J. Crystal Growth 222 (2001) 135.
    [11] Z. Zeng, H. Mizuseki, K. Higashino and Y. Kawazoe, Direct numerical simulation of
    oscillatory Marangoni convection in cylindrical liquid bridges, J. Crystal Growth 204
    (1999) 395.
    [12] M. Cheng and S. Kou, Detecting temperature oscillation in a silicon liquid bridge, J.
    Crystal Growth 218 (2000) 132.
    [13] M. Schweizer, A. Croll, P. Dold , Th. Kaiser, M. Lichtensteiger and K.W. Benz,
    Measurement of temperature fluctuation and microscopic growth rates in a silicon
    floating zone under microgravity, J. Crystal Growth 203 (1999) 500.
    [14] S. Nakamura, T. Hibiya and K. Kakimoto, Temperature fluctuations of the
    Marangoni flow in a liquid bridge of molten silicon under microgravity on board the
    TR-IA-4 rocket, J. Crystal Growth 186 (1998) 85.
    [15] D. Schwabe, R. Velten and A. Scharmann, The instability of surface tension driven
    flow in models for floating zone under normal and reduced gravity, J. Crystal Growth
    99 (1990) 1258.
    [16] L.B.S. Sumner and G.P. Neitzel, Oscillation thermocapillary convection in liquid
    bridges with highly deformed free surfaces: experiments and energy-stability analysis,
    Phys. Fluids 13 (2001) 107.
    [17] Z.M. Tang and W. R. Hu, Influence of liquid bridge volume on the onset of
    oscillation in floating –zone convection III. Three-dimensional model, J. Crystal
    Growth 207 (1999) 239.
    [18] Z. M. Tang, W. R. Hu and N. Imaishi, Two bifurcation transitions of the floating half
    zone convection in a fat liquid bridge of larger Pr, Int. J. Heat Mass Transfer 44 (2001)
    35
    1299.
    [19] Q. S. Chen and W.R. Hu, Influence of liquid bridge volume on instability of floating
    half zone convection, Int. J. Heat Mass Transfer 41 (1998) 825.
    [20] R. Monti, R. Savino and M. Lappa, Influence of geometrical aspect ratio on the
    oscillatory Marangoni convection in liquid bridges, Acta Astronautica 47 (2000) 753.
    [21] N.K. Udayashankar, K. Gopalakrishna Naik and H.L. Bhat, The influence of
    temperature gradient and lowering speed on the melt-solid interface shape of GaxIn1-xSb
    ally crystals grown by vertical Bridgman technique, J. Crystal Growth 203 (1999) 333.
    [22] E. Tokizaki, K. Terashima and S. Kimura, Variations in the physical properties of
    molten lithium niobate caused by doping with magnesium oxide, J. Crystal Growth
    123 (1992) 121.
    [23] H. Ogawa, H. Ohta and Y. Waseda, Thermal diffusivity measurement in LiNbO3
    melts doped with MgO by laser flash method, J. Crystal Growth 133 (1993) 255.
    [24] Y. Anzai, S. Kimura, T. Sawada, T. Rudolph and K. Shigematsu, Measurement of
    density, viscosity and surface tension of molten lithium niobate, J. Crystal Growth 134
    (1993) 227.
    [25] X. Chen, Q. Wang, X. Wu and K. Lu, Densities and surface tensions of lithium
    niobate melts, J. Crystal Growth 204 (1999) 163.
    [26] X. Chen, Q. Wang, X. Wu and K. Lu, Temperature dependence of viscosity of
    molten lithium niobate, J. Crystal Growth 218 (2000) 93.
    [27] L. J. Hu, Growth and Characterization of MgO doped LiNbO Single Crystals,
    Graduate School of Minerals, Metallurgy and Materials Science, National Cheng-Kung
    University, R.O.C, (1991).
    [28] J. C. Chen, C. Hu and Y. C. Lee, Temperature dependence of the emittance of LiF
    and LiNbO3 in the near-infrared spectra, Jpn. J. Appl. Phys. 37 (1998) 4070.
    36
    [29] J. C. Chen, C. Hu and Y. C. Lee, Thermal radiative emission of LiF and LiNbO3 in
    the near-infrared spectra, Jpn. J. Appl. Phys. 37 (1998) 224.
    [30] C. Hu and J. C. Chen, Experimental observation of interface shapes in the floating
    zone of lithium niobate during a CO2 laser melting, Int. J. Heat Mass Transfer. 39 16
    (1996) 3347.
    [31] J. C. Chen and C. Hu, A simple method of examining the propagation of defects in
    the floating-zone solidification process of lithium niobate, J. Crystal Growth 166 (1996)
    151.
    [32] J. C. Chen and C. Hu, Measurement of the float-zone interface shape for lithium
    niobate, J. Crystal Growth 149 (1995) 87.
    [33] M. Levenstam, G. Amberg, T. Carlberg and M. Andersson, Experimental and
    numerical studies of thermocapillary convection in a floating zone like configuration, J.
    Crystal Growth 158 (1996) 224.
    [34] Y.L Yao, F. Liu and W.R. Hu, How to determine critical Marangoni number in half
    floating zone convection, Int. J. Heat Mass Transfer 39 12 (1996) 2539.

    QR CODE
    :::