跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃子驊
Zi-Hua Huang
論文名稱: 以干涉微影製作之次波長微結構提升非晶矽太陽能電池的光學吸收率
a-Si thin film optical absorption improve by subwavelength structures
指導教授: 張正陽
Jenq-Yang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 99
語文別: 中文
論文頁數: 98
中文關鍵詞: 非晶矽薄膜次波長結構光學吸收率干涉微影奈米壓印光學模擬
外文關鍵詞: Interference lithography, Nano Imprint, a-Si thin film, subwavelength structure, optical absorption, RCWA simulation
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 干涉微影具有大面積製作、快速、低成本、可調整周期等優點,不論是奈米等級的蝕刻,製作光罩在太陽能電池,光子晶體上都有廣泛的應用。在本研究中利用干涉微影的方法在製作週期500nm~
    1000nm的次波長結構,應用在非晶矽薄膜上期望增加吸收率,利用模擬和實驗討論每一層結構對穿透率、霧度(Haze ratio)、吸收率的影響,討論模擬和實驗的正確性。在模擬中、非晶矽太陽能電池的光學吸收率,在週期為500nm的次波長結構有最佳的光學吸收率,增益了20.5%的光學吸收率。當有背反射層時,在週期為300nm時有最佳的吸收率比沒有結構的太陽能電池增益了18.5%的吸收率。而在ITO厚度是70nm時有最好的抗反射效果。
    本實驗中製作週期500nm~1000nm的結構非晶矽薄膜,結果發現在長波段或在短波段部分吸收率都有提高,尤其是在結構週期為500nm,深度130nm的微結構薄膜有最好的吸收率,比沒有結構的太陽能電池增益了42.8%的光學吸收率。而在鍍上一層銀的背反射層之後再量測一次非晶矽薄膜的吸收率,發現有加背反射層非晶矽薄膜吸收的波段變廣,週期500nm的結構吸收收率增益41%。


    Interference lithography is a good method which is large area of production, rapid, low-cost fabrication, and adjustable period, whether nano level etching mask in the production of solar cells, photonic crystals are widely used. In this study, we use interference lithography in the production period between 500nm to 1000nm found that the application of a-Si thin film on the expected increase in the absorption. The use of simulations and experiments is to discuss the effect of each layer in transmittance, Haze ratio and absorption. Then we discuss the accuracy of simulation and experiment. In the simulation, the a-Si thin film’s optical absorption is increase at the structure period of sub-1000nm.Structure film has the best optical absorption, optical absorption gain 20.5% at period 500nm. When it has back-reflection layer, period 300nm has the best absorption which is gain of 18.5 percent. In the ITO thickness is 70nm has the best anti-reflective effect.
    In this study, the production period is between 500nm to 1000nm in the structure of a-Si thin film was found that the absorption is increased in the part of long wavelength and short wavelength, especially in the structure period of 500nm, depth 130nm which absorption has gain 42.8% than those without structure. When it Coated a layer of silver as the reflective layer back after an a-Si film, the measurement of absorption is found that the absorption is increases of broad-band, and the absorption gain 41% at structure period 500nm.

    碩士論文電子檔授權書 I 論文指導教授推薦書 II 論文口試委員審定書 III 中文摘要 IV 英文摘要 V 誌謝 VI 圖目錄 IX 表目錄 XIII 第一章 序論 1 1.1 研究動機 1 1.2 文獻回顧 2 第二章 基礎原理 8 2.1薄膜太陽能電池的光吸收與載子產生率 8 2.2 干涉曝光的原理 12 2.2.2 Llyord’s mirror的原理 15 2.4 嚴格耦合波理論 20 第三章 實驗架構 24 3.1 次波長微結構製作 24 3.1.1 曝光系統 24 3.1.2奈米壓印製做 29 3.3 光學量測系統 33 3.3.1霧度(Haze ratio)量測 33 3.3.2反射率量測 36 第四章 結果與討論 37 4.1 次波長微結構製作 37 4.2利用RCWA方法模擬結構非晶矽薄膜吸收率的結果 47 4.3次波長微結構光學特性量測 62 4.3.1穿透率與霧度(Haze ratio)量測 62 4.3.2 次波長結構非晶矽薄膜吸收率量測 70 4.4模擬與量測比較討論 75 第五章 結論 79 5.1研究結果 79 5.2 未來與展望 81 參考文獻 82

    [1]. Dewan, R. and D. Knipp, Light trapping in thin-film silicon solar cells with integrated diffraction grating. Journal of Applied Physics, 2009. 106(7).
    [2] Ferry, V.E., et al., Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors. Applied Physics Letters, 2009. 95(18).
    [4] Isabella, O., et al., Modulated surface textures using zinc-oxide films for solar cells applications. Physica Status Solidi a-Applications and Materials Science, 2010. 207(3): p. 642-646.
    [5] Light scattering properties of surface textured substrates Phys. Status Solidi C 7, No. 3–4, 945– 948 (2010)
    [6] Jager, K. and M. Zeman, A scattering model for surface-textured thin films. Applied Physics Letters, 2009. 95(17).
    [7] Ferry, V.E., et al., Light trapping in ultrathin plasmonic solar cells. Optics Express, 2010. 18: p. A237-A245.
    [8] Cui, Y., et al., Nanodome Solar Cells with Efficient Light Management and Self-Cleaning. Nano Letters, 2010. 10(6): p. 1979-1984.
    [9] Cui, Y., et al., Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays. Nano Letters, 2009. 9(1): p. 279-282.
    [10] 太陽能電池 黃惠良
    [11] 四道光干涉微影之曝光與顯影參數對微結構輪廓及深度之探黃家麒 2006 中央機械碩士論文
    [12] 干涉微影之曝光與顯影參數對周期性結構外型之影響 吳宜寧
    [13] Chen, J.C., et al., Analysis of a two-dimensional photonic bandgap structure fabricated by an interferometric lithographic system. Applied Optics, 2007. 46(16): p. 3196-3204.
    [14] Byun, I. and J. Kim, Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser. Journal of Micromechanics and Microengineering, 2010. 20(5).
    [15] Hecht OPTICS fourth edition
    [16] kaspar f.g.”diffraction by periodically stratified grating with complex dielectric constant,” J. opt.soc.am.63.37(1973)
    [17] Knop K.”Rigorous diffraction they for transmission phase grating with deep rectangular grooves,”J. Opt. Soc.Am.68 1206(1978)
    [18] M.G..Moharam and T.K.Gaylord,”Rigorous coupled-wavw analysis of planar-grating diffraction,”J. Opt.Soc.Am.71 811(1981)
    [19] 自製平板式直壓印機與其應用 林裕博 2010中央光電碩士論文
    [20] 表面結構及基板圖案對發光二極體光功率之影響 倪慶懷
    [21] 表面電漿增益矽薄膜太陽能電池之微光學與光電模擬 趙建昌
    [22]. Haase, C. and H. Stiebig, Thin-film silicon solar cells with efficient periodic light trapping texture. Applied Physics Letters, 2007. 91(6).
    [23] DeNatale, J. F.; Hood, P. J.; Flintoff, J. F.; Harker, A. B.;”Fabrication and characterization of diamond moth eye antireflective surfaces on Ge” Journal of Applied Physics Feb 1992 1388 - 1393

    QR CODE
    :::