| 研究生: |
楊心福 Hsin-Fu Yang |
|---|---|
| 論文名稱: |
以光譜學方法研究含釤鋱配位聚合物內能量轉移之機制 |
| 指導教授: |
張伯琛
Bor-Chen Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 稀土元素 、光致放光光譜 、激發光譜 、時間解析光譜 、能量轉移 |
| 外文關鍵詞: | Rare earth elements, Photoluminescence spectra, Excitation spectra, Time-resolved spectra, Energy transfer |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要使用光致放光光譜、激發光譜及時間解析光譜之光譜技術來分析以中溫水熱法合成的R2(C8H10O4)3配位聚合物,其配位基為1,4-cyclohexanedicarboxylate (C8H10O4,簡稱CHDC),而配位中心R則是不同莫耳比例之稀土元素釔(Yttrium, Y)、鋱(Terbium, Tb)及釤(Samarium, Sm) (R = Y, Tb, Sm)。藉由單晶及粉末X光繞射實驗去鑑定合成出之晶體的結構與純度,並搭配感應耦合電漿原子發射光譜分析儀(ICP-AES)鑑定配位中心之稀土元素的準確比例。在一系列之R2(CHDC)3(R = Y, Tb, Sm)化合物的放光光譜中,我們觀測到Tb3+的放光強度會因摻入的Sm3+量越多而受到嚴重的淬熄現象(quenching phenomena)。分析SmxTb2-x(CHDC)3化合物之Sm3+和Tb3+放光衰退曲線後發現兩曲線皆擁有兩段放光行為,分別是與Sm3+濃度有關之前半段放光衰退,和與Sm3+和Tb3+濃度皆無關之後半段放光衰退。同時,我們以線性和動力學模型成功地模擬出這些配位聚合物中的衰退情形,並進一步探討所得到的衰退速率與可能的機制。最後,藉由量測一系列與Sm3+相關之物種的放光光譜,來推測影響所觀測到之放光衰退曲線的因素。
Spectroscopic techniques such as photoluminescence, excitation, and time-resolved spectra were used to study the coordination polymers, R2(C8H10O4)3, (R= Y, Sm, Tb, C8H10O4: 1,4-cyclohexanedicarboxylate), synthesized by mid-temperature hydrothermal method. Single crystal and powder X-ray diffraction data were acquired to confirm the structure and purity of these compounds, while the Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) was used to verify the accurate composition of luminescent centers. Quenching phenomena were observed in the emission decay curves of Tb3+ in these compounds as the addition of Sm3+. The emission decay curves of Tb3+ and Sm3+ in these coordination polymers were acquired and analyzed. The analysis shows two emission decay behaviors in both Tb3+ and Sm3+. The first is a Sm3+ concentration dependent fast decay, and the second is a concentration independent slow decay. We have adopted kinetics model that successfully analyzed these decay curves and obtained the related rate constants. The emission spectra of Sm3+ related compounds provides the possible factors that affect the decay curves.
1. Evans, R. C.; Carlos, L. D.; Douglas, P.; Rocha, J. Tuning the emission colour in mixed lanthanide microporous silicates: energy transfer, composition and chromaticity. Journal of Materials Chemistry 2008, 18, 1100-1107.
2. Ferreira, A.; Ananias, D.; Carlos, L. D.; Morais, C. M.; Rocha, J. Novel microporous lanthanide silicates with tobermorite-like structure. Journal of The American Chemical Society 2003, 125, 14573-14579.
3. Carnall, W. T.; Goodman, G. L.; Rajnak, K.; Rana, R. S. A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3. The Journal of Chemical Physics 1989, 90, 3443-3457.
4. Luk, C. K.; Richardson, F. S. Circularly polarized luminescence and energy transfer studies on carboxylic acid complexes of europium (III) and terbium (III) in solution. Journal of the American Chemical Society 1975, 97, 6666-6675.
5. Cotton, S. Lanthanide and Actinide Chemistry 2006, John Wiley & Sons, Inc., Chichester, England.
6. Liu, S. P.; Chen, M. L.; Chang, B. C.; Lii, K. H. Flux synthesis, crystal structure, and photoluminescence of a heterometallic uranyl-europium germanate with U=O—Eu linkage: K4[(UO2)Eu2(Ge2O7)2]. Inorganic Chemistry 2013, 52, 3990-3994.
7. 陳姿寧, 國立中央大學化學系碩士論文. (2014).
8. 李穗美, 國立中央大學化學系碩士論文. (2015).
9. 陳孟琳, 國立中央大學化學系碩士論文. (2013).
10. 温書涵, 國立中央大學化學系碩士論文. (2016).
11. Wang, S. L.; Richerson, J. W., Jr. Neutron powder diffraction study of the mixed-valence vanadium pyrophosphate RbV3P4O17. Zeitschrift für Kristallographie-Crystalline Materials 1992, 202, 227-236.
12. West, A. R. Solid State Chemistry and Its Applications 1984, Wiley, Chichester, West Sussex.
13. Johnson, J. W.; Jacobson, A. J. Redox intercalation reactions of VOPO4·2H2O. Angewandte Chemie International Edition in English 1983, 22, 412-413.
14. Wanklyn, B. M. The flux growth of single crystals of rare earth perovskites (orthoferrites, orthochromites and aluminates). Journal of Crystal Growth 1969, 5, 323-328.
15. 陳逸翔, 國立中央大學化學系碩士論文. (2012).
16. Blasse, G. Luminescence of inorganic solids: from isolated centres to concentrated systems. Progress in Solid State Chemistry 1988, 18, 79-171.
17. Wu, Z. C.; Shi, J. X.; Wang, J.; Gong, M. L.; Su, Q. A novel blue-emitting phosphor LiSrPO4: Eu2+ for white LEDs. Journal of Solid State Chemistry 2006, 179, 2356-2360.
18. Kellendonk, F.; Blasse, G. Luminescence and energy transfer in EuAl3B4O12. The Journal of Chemical Physics 1981, 75, 561-571.
19. Yokota, M.; Tanimoto, O. Effects of diffusion on energy transfer by resonance. Journal of The Physical Society of Japan. 1967, 22, 779-784.
20. Solarz, P.; Karbowiak, M.; Glowacki, M.; Berkowski, M.; Diduszko, R.; Ryba-Romanowski, W. Optical spectra and crystal field calculation for SrB4O7:Sm2+. Journal of Alloys and Compounds 2016, 661, 419-427.
21. Knope, K. E.; de Lill, D. T.; Rowland, C. E.; Cantos, P. M. Uranyl Sensitization of Samarium(III) Luminescence in a Two-Dimensional Coordination Polymer. Inorganic Chemistry 2012, 51, 201-206.