跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳泳智
Yong-Zhi Chen
論文名稱: 以側磨光纖半塊材耦合器激發微米球型共振腔基模之研究
Excitation of fundamental whispering-gallery modes in a microsphere by a half-block coupler
指導教授: 戴朝義
Chao-Yi Tai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 95
語文別: 英文
論文頁數: 53
中文關鍵詞: 微米球品質因子耳語廊模
外文關鍵詞: whispering-gallery mode, microsphere, quality factor, half-block coupler
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究以側磨光纖半塊材耦合器激發微米球型共振腔之基模。耦合器以長程光通訊之單模光纖製作(Corning SMF-28),其等效折射率為1.4682 @1550nm ;微米小球則以BK7玻璃製作,其半徑為150±1.5微米,折射率為1.50065 @1550nm。所使用的光源為波段1545nm至1565nm的放大自發性輻射(ASE),寬頻光波進入耦合器後,其中某些特定波長的光波藉由耦合器以消散場的形式耦合進入微米球型共振腔,形成共振模態。本實驗所達到的最高耦合效率為10%,品質因子為17000以及自由光譜範圍為1.7nm。


    A simple method for the excitation of fundamental whispering-gallery modes in a BK7 glass microsphere by a side-polished fiber half-block coupler is demonstrated. The coupler is made of the single-mode fiber (Corning SMF-28) which has an effective refractive index of 1.4682 @1550nm. The radius and refractive index of the microsphere equal to 150± 1.5 um and 1.500065 @1550 nm, respectively. The resonant modes are identified from the transmission spectrum, which indicates that the quality factor of 17000, free spectral range of 1.7 nm and coupling efficiency of 10% are obtained.

    Table of Contents Abstract List of Tables List of Figures Chapter 1 Introduction……….…………………1 1-1 Background…………..............…………………………...1 1-2 Motivation……………………………………………....4 1-3 Thesis organization……………..…………….…………..7 Chapter 2 Theory………………………………9 2-1 Introduction………………………………………………...9 2-2 Effective index of half-block coupler...……....…..……….12 2-2-1 Effective refractive index………………………….12 2-2-2 Modal profile………………………………………15 2-3 Resonant modes of a microsphere………………………16 2-3-1 Wave function of WGMs………………………..16 2-3-2 Optical ray in the microsphere…………………….22 2-4 Quality factors and coupling efficiency………………….23 2-4-1 Quality factor………….….……………………….23 2-4-2 Loss mechanisms..….…….……………………….25 2-4-3 Whispering-gallery quality factor...……………….26 2-4-4 Scattering and absorption quality factor……….….27 2-4-5 External quality factor………….....……………….27 2-4-6 parasitic quality factor………….....……………….29 2-4-7 Coupling efficiency…………….....……………….30 Chapter 3 Experiments………………………33 3-1 Introduction….....................................................................33 3-2 Fabrication of the half-block coupler…………………...34 3-2-1 The fabrication process…………...……………….34 3-2-2 The line breaking cracks and the transmission degradation………………………………………..36 3-3 Experimental setup……………..…………………………38 3-4 Measurement and discussion……………………………...39 3-4-1 The transmission spectrum of excited WGMs.........39 3-4-2 Polarization dependent loss of half-block coupler...46 3-4-3 Transversal position dependence of the coupling efficiency……………………...……..……………47 Chapter 4 Summary and future work………49 4-1 Summary……………………………………………..…...49 4-2 Future work……………………………………………...51 Reference…………………………………..52

    [1] R.K. Chang and A. J. Campillo, Eds., “Optical Processes in Microcavities.” (Advanced Series in Applied Physics), vol. 3, Singapore: World Scientific, 1996
    [2] A. B. Matsko and V. S. Ilchenko, “Optical Resonators with Whispering-gallery Modes- Part I: Basics,” IEEE Journal of selected topics in quantum electronics, vol. 12, NO. 1, 2006
    [3] S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “ Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91, 043902, 2003
    [4] A. B. Matsko and V. S. Ilchenko, “High-Q optical whispering gallery microresonators-precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun.,113, 133-143, 1994
    [5] M. L. Gorodetsky and V. S. Ilchenko, “ Optical microsphere resonators: Optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Amer. B, 16, 147-154, 1999
    [6] S. Shiller and R. L. Byer, “ High-resolution spectroscopy of whispering gallery modes in large dielectric sphere,” Opt. Lett., 16, 130-132, 1991
    [7] F. C. lom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, and Th. J. A. Popma, “ Experimental study of integrated-optics microcavity resonators: Toward an all-optical switching device,” Appl. Phys. Lett. 71 (6), 1997
    [8] Thanh Le, Anatoliy, A. Savchenkov, Hidehisa Tazawa, William H. Steier, and Lute Maleki, “ Polymer Optical Waveguide Vertically Coupled to High-Q Whispering Gallery Resonators,” J. Lightwave Techonl., 18, NO.7 , 859-861, 2006
    [9] J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “ Phase-matched excitation of whispering-gallery-mode resonnaces by a fiber taper,” Opt. Lett., 22, No.15, 1129-1131, 1997
    [10] B. E. Little, J. –P. Laine, D. R. Lim, H. A. Haus, L. C. Kimerling, and S. T. Chu, “Pedestal antiresonant reflecting waveguides for robust coupling to microsphere resonators and for microphotonic circuits,” Opt. Lett., 25, No.1, 73-75, 2000
    [11] J.-P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, “ Microsphere Resonator Mode Characterization by Pedestal Anti-Resonant Reflecting Waveguide Coupler,” IEEE J. Photon. Technol. Lett., 12, NO. 8, 1004-1006, 2000
    [12] N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, and V. Lefèvre, “Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres,” Opt. Lett., 20, NO. 8, 1995
    [13] Ming Cai, Guido Hunziker, and Kerry Vahala, “ Fiber-Optic Add-Drop Device Based on a Silica Microsphere-Whispering Gallery Mode System,” IEEE J. Photon. Technol. Lett., 11, NO. 6, 1999
    [14] B. E. Little, J. –P. Laine, and H. A. Haus, “Analytical theory of coupling from tapered fibers and halfblocks into microsphere resonators,” J. Lightwave Technol. 17, 704-715 (1999).
    [15] A. W. Snyder and J. D. Love, Optical Waveguide Theory. New York: Chapman and Hall, 1983.
    [16] A.A. Savchenkov, A.B. Matsko, D. Strekalov, V.S. Ilchenko and L. Maleki, “Mode filtering in optical whispering gallery resonators, ” ELECTRONICS LETTERS, Vol. 41, No. 8, 2005
    [17] O. Svelto, Principles of lasers. 3rd ed. Chapter 4, 1989
    [18] K. Vahala, Optical Microcavities, World Scientific Publishing Company, 2004
    [19] M. Kuznetsov and H. A. Haus, “Radiation loss in dielectric waveguide structures by the volume current method,” IEEE J. Quantum Electron., vol. QE-19, pp. 1505–1514, 1983.
    [20] http://www.corning.com/
    [21] http://www.mellesgriot.com/
    [22] M. Hossein-Zadeh, and K. J. Vahala, “Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14, No. 12, pp.10800-10810, 2006
    [23] A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilo-Hertz optical resonances in dielectric crystal cavities,” Phys. Rev. A, vol. 70, pp. 051–804, 2004.
    [24] V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering gallery modes,” Phys.Lett. A, vol. 137, pp. 393–397, 1989.
    [25] T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip.” Appl. Phys. Lett. 85 (25), 2004
    [26] T. J. Kippenberg, “Nonlinear Optics in Ultra-high-Q Whispering-Gallery Optical Microcavities, “California Institute of Technology, thesis for the degree of doctor of philosophy, 2004.

    QR CODE
    :::