跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳可瑾
Ke-Jin Chen
論文名稱: 基於中醫脈搏特徵的低運算資源個人身分識別系統設計
Design of a Low-Resource Personal Identity Recognition System Based on Traditional Chinese Medicine Pulse Features
指導教授: 許富皓
Fu-Hau Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系在職專班
Executive Master of Computer Science & Information Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 50
中文關鍵詞: 生物辨識脈搏孿生網路機率神經網路
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一種基於中醫脈診特徵與PPG感測技術之低計算資源的個人身分識別系統,目的是提升穿戴式裝置中身份辨識的性能和效率。本研究採用接觸式PPG感測器直接擷取脈搏訊號。為降低記憶體與運算資源的需求,我們引入中醫血液循環共振理論,從PPG訊號中提取12個固定諧振頻率作為脈診特徵,取代傳統依賴時域與頻域複雜特徵擷取的作法。在這基礎上,我們設計一個結合孿生網路與機率式神經網路的混合模型,作為身分識別分類器,以取代常見但計算成本高的CNN分類器。實驗結果顯示,本方法在保有高識別率的同時,顯著減少記憶體使用與推論時間,極具應用於嵌入式穿戴設備之潛力,並開創中醫脈診於現代生物特徵識別領域中的創新應用。


    This study proposes a low-resource personal identity recognition system based on Traditional Chinese Medicine (TCM) pulse features and PPG (photoplethysmography) sensing technology, aiming to enhance the performance and efficiency of identity verification in wearable devices. Instead of remote imaging, we adopt a contact-based PPG sensor to directly acquire pulse signals. To reduce memory usage and computational overhead, we introduce the TCM theory of blood circulation resonance and extract 12 fixed resonance frequencies from the PPG signals as pulse features, replacing traditional time-domain and frequency-domain feature extraction methods. Building on this, we design a hybrid model that combines a Siamese network with a Probabilistic Neural Network (PNN) as the identity classifier, in place of conventional yet computationally intensive CNN-based models. Experimental results show that the proposed method maintains high recognition accuracy while significantly reducing memory usage and inference time. This demonstrates strong potential for deployment in embedded wearable devices and represents an innovative integration of TCM pulse diagnosis into modern biometric identification systems

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VI 第1章 緒論 1 1.1 研究背景 1 1.2 研究目標 3 1.3 論文架構 4 第2章 技術回顧 5 2.1 PPG感測原理 5 2.2 PPG特徵擷取 8 2.2.1 時域特徵 8 2.2.2 頻域特徵 9 2.3 中醫科學脈診理論 10 2.4 神經網路分類器 11 2.4.1 孿生網路(Siamese Network) 11 2.4.2 機率式神經網路 13 第3章 脈搏身分識別系統設計 16 3.1 PPG感測器訊號擷取 16 3.1.1 硬體架構簡介 16 3.1.2 感測器初始化與系統啟動流程 18 3.1.3 心率訊號擷取 18 3.1.4 訊號前處理 20 3.2 脈診特徵擷取 21 3.2.1 血液循環共振理論 21 3.2.2 PPG頻域訊號處理 22 3.2.3 建立脈搏特徵向量 22 3.3 脈搏身分識別分類器 24 3.4 PSO最佳化分類器 25 第4章 系統驗證和實驗 28 4.1 實驗平台與資料來源 28 4.2 實驗設計與評估指標 30 4.2.1 實驗流程 30 4.2.2 評價指標 31 4.3 不同分類器比較實驗 32 4.4 σ 最佳化對分類效能影響實驗 34 4.5 穿戴式平台佈署實驗 35 第5章 結論 38 5.1 總結 38 5.2 未來工作 38 參考文獻 40

    [1] Jain, A. K., Ross, A., & Prabhakar, S. (2004). "An Introduction to Biometric Recognition." IEEE Transactions on Circuits and Systems for Video Technology, 14(1), 4–20.
    [2] Fratini, A., Sansone, M., Bifulco, P., & Cesarelli, M. (2015). "Individual identification via electrocardiogram analysis." BioMedical Engineering OnLine, 14(1).
    [3] Jain, A. K., Nandakumar, K., & Ross, A. (2016). "50 years of biometric research: Accomplishments, challenges, and opportunities." Pattern Recognition Letters, 79, 80–105.
    [4] Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). "Heart rate variability: a review." Medical & Biological Engineering & Computing, 44(12), 1031–1051.
    [5] Voss, A., Schroeder, R., Heitmann, A., Peters, A., & Perz, S. (2015). "Short-Term Heart Rate Variability—Influence of Gender and Age in Healthy Subjects." PLOS ONE, 10(3), e0118308.
    [6] Delaney, J. P. A., & Brodie, D. A. (2000). "Effects of short-term psychological stress on the time and frequency domains of heart-rate variability." Perceptual and Motor Skills, 91(2), 515–524.
    [7] Malik, M. (1996). "Heart Rate Variability." Annals of Noninvasive Electrocardiology, 1(2), 151–181.
    [8] Lukman, S., He, Y., & Hui, S. (2007). "Computational methods for Traditional Chinese Medicine: A survey." Computer Methods and Programs in Biomedicine, 88(3), 283–294.
    [9] 《黃帝內經·素問》
    [10] Chung, Y., Hu, C., Luo, C., Yeh, C., Si, X., Feng, D., Yeh, S., & Liang, C. (2013). "Possibility of quantifying TCM finger-reading sensations: I. Bi-Sensing Pulse Diagnosis Instrument." European Journal of Integrative Medicine, 4(3), e255–e262.
    [11] Luo, C., Chung, Y., Hu, C., Yeh, C., Si, X., Feng, D., Yeh, S., & Liang, C. (2012). "Possibility of quantifying TCM finger-reading sensations: II. An example of health standardization." European Journal of Integrative Medicine, 4(3), e263–e270.
    [12] Tang, A. C., Chung, J. W., & Wong, T. K. (2012). "Validation of a Novel Traditional Chinese Medicine Pulse Diagnostic Model Using an Artificial Neural Network." Evidence-Based Complementary and Alternative Medicine, 2012, 1–7.
    [13] Allen, J. (2007). "Photoplethysmography and its application in clinical physiological measurement." Physiological Measurement, 28(3), R1–R39.
    [14] Tamura, T., Maeda, Y., Sekine, M., & Yoshida, M. (2014). "Wearable Photoplethysmographic Sensors—Past and Present." Electronics, 3(2), 282–302.
    [15] Elgendi, M. (2012). "On the Analysis of Fingertip Photoplethysmogram Signals." Current Cardiology Reviews, 8(1), 14–25.
    [16] Bolanos, M., Nazeran, H., & Haltiwanger, E. (2006). "Comparison of Heart Rate Variability Signal Features Derived from Electrocardiography and Photoplethysmography in Healthy Individuals." 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.
    [17] Shaffer, F., & Ginsberg, J. P. (2017). "An Overview of Heart Rate Variability Metrics and Norms." Frontiers in Public Health, 5.
    [18] Zahedi, E., Sohani, V., Ali, M. A. M., Chellappan, K., & Beng, G. K. (2015). "Experimental feasibility study of estimation of the normalized central blood pressure waveform from radial photoplethysmogram." Journal of Healthcare Engineering, 6(1), 121–144.
    [19] Wei, Q., Pu, F., Xu, Y., & Liu, Z. (2017). "Wrist pulse signals analysis based on Deep Convolutional Neural Networks." 2017 IEEE International Conference on Mechatronics and Automation (ICMA), 1869–1873.
    [20] Wei, J., H. Luo, et al. (2018). "Transdermal Optical Imaging Reveal Basal Stress via Heart Rate Variability Analysis: A Novel Methodology Comparable to Electrocardiography." Frontiers in Psychology, 9, 98.
    [21] McAdams, E. T., Bafna, A., Dhamija, R., & Mendelson, Y. (2016). "Advances in photoplethysmography-based sensing." IEEE Sensors Journal, 16(12), 4390-4396.
    [22] Kaul, A., & Walia, A. (2023). "PPG-Based Biometric Recognition: Opportunities with Machine and Deep Learning." In G. Jaswal, R. Ramachandra, & V. Kanhangad (Eds.), AI and Deep Learning in Biometric Security: Trends, Potential, and Challenges (pp. 323). CRC Press.
    [23] Zhang, J. (2019). "Differential feature extraction and support vector machine for PPG biometrics." IEEE Transactions on Biomedical Engineering, 66(2), 369–377.
    [24] Sun, Y. (2020). "PPG-based biometrics using differential features and SVM." IEEE Journal of Biomedical and Health Informatics, 24(3), 658–665.
    [25] Wang, L. (2018). "Multiple level extreme learning machine for PPG biometrics." IEEE Access, 6, 44536–44545.
    [26] Wang, W. K., & Wang, Y. L. (1991). Resonance: A principle underlying the frequency characteristics of the arterial system. Circulation Research, 68(3), 862–871.
    [27] Liu, J., H. Luo, et al. (2018). "Transdermal optical imaging revealed different spatiotemporal patterns of facial cardiovascular activities." Sci Rep 8, 10588.
    [28] Barszczyk, A., W. Zhou, & K. Lee. (2021). "AI and Transdermal Optical Imaging." Artificial Intelligence in Medicine, 1-14.
    [29] Liu, J., H. Luo, et al. (2018). "Transdermal optical imaging revealed different spatiotemporal patterns of facial cardiovascular activities." Scientific Reports, 8(1), 10588.
    [30] Kim, H. G., E. J. Cheon, et al. (2018). "Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature." Psychiatry Investigation, 15(3), 235-245.
    [31] 王唯工、陳國華、張岳華等 (2016). "基於血液循環共振理論的“脈譜”診斷方法研究." 中國中醫藥科技, 23(9), 1141-1143.
    [32] Luo, H., D. Yang, A. Barszczyk, et al. (2019). "Smartphone-Based Blood Pressure Measurement Using Transdermal Optical Imaging Technology." Circulation: Cardiovascular Imaging, 12(8).
    [33] Zhou, W., Y. Wang, X. Gu, et al. (2020). "Importance of general adiposity, visceral adiposity and vital signs in predicting blood biomarkers using machine learning." Int J Clin Pract, 75.
    [34] Richtek Technology Corp., “AN057 - Buck Converter Layout Considerations,” Richtek, Accessed: Jul. 23, 2025.

    QR CODE
    :::