| 研究生: |
張逸品 Yi-Pin Chang |
|---|---|
| 論文名稱: |
基於高解析度系集卡爾曼濾波器之渦旋初始化及其對於颱風強度預報之影響:2010年梅姬颱風個案研究 Vortex initialization through the high-resolution ensemble Kalman filter framework and its impact on intensity forecast: a case study of Typhoon Megi (2010) |
| 指導教授: |
楊舒芝
Shu-Chih Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣科學學系 Department of Atmospheric Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 資料同化 、系集卡爾曼濾波器 、颱風強度預報 |
| 外文關鍵詞: | data assimilation, EnKF, TC intensity prediction |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在颱風預報研究之課題中,強度預報一直都具有高度挑戰性,尤其快速增強(Rapid Intensification, RI)更是強度預報的一大挑戰。許多研究提出渦旋初始化方法以改善颱風初始場與強度預報,其中系集卡爾曼濾波器資料同化方法能透過流場相依的動力誤差特性結合短期模式預報(背景場)與觀測資料,提供更真實的初始場且進一步改善颱風強度預報。
本篇研究在WRF模式與渦旋中心-局地系集轉換卡爾曼濾波器(TC Centered-Local Ensemble Transform Kalman Filter, TCC-LETKF)同化架構下,探討同化颱風內核觀測對於颱風梅姬(2010)強度預報的影響。本研究中使用之颱風內核觀測包含飛機偵查所投擲的GPS投落送(dropsonde)資料(Impact of Typhoons on the Ocean in Pacific field campaign, D’Asaro et al. 2014)以及Wu et al. (2010)所提出的海表面軸對稱風速結構。資料同化起始時間為0000 UTC 14 October 2010,同化至0000 UTC 15 October 2010和0000 UTC 16 October 2010後進行預報。實驗結果顯示,越早起始預報,強度預報結果越好,且同化投落送後,模式颱風較能掌握快速增強的趨勢;而同化海表面軸對稱風速結構雖能有效使同化期間的颱風與作業單位發布之颱風強度資訊接近,但預報後颱風增強較慢;同時同化兩種內核觀測時,如果資料量相當,不僅能改善分析場颱風強度與結構真實性,對於強度預報也有正面的影響。總結來說,海表面軸對稱風速結構能增強颱風平均風場,但對於修正熱力結構則須更為謹慎;投落送資料能在颱風分析場帶來不對稱量與溫濕度場垂直結構的資訊,因此不僅分析場颱風與真實颱風結構較接近,對於預報期間快速增強過程與積雲對流爆發(convective burst)發展也有所助益。
One of the most challenging issues among tropical cyclone (TC) forecasting is the intensity prediction, especially for rapid intensification (RI) cases. Vortex initialization based on ensemble data assimilation has the advantage of dynamical consistency and makes good use of observations, potentially giving more realistic initial conditions and better intensity forecasts.
In this study, initialization strategies based on EDA are applied to the case of Typhoon Megi (2010) under the framework of Weather Research and Forecasting model-TC Centered Local Ensemble Transform Kalman Filter (WRF-TCCLETKF) to explore the impact of assimilating inner-core observations, including dropsondes (DP) and the axisymmetric surface wind structure (VT). The dropsonde data were collected from the Impact of Typhoons on the Ocean in Pacific (ITOP) field campaign, and the assimilation of the axisymmetric surface wind structure follows the methodology proposed by Wu et al. (2010). The initial time of assimilation was 0000 UTC 14 October 2010, and the forecasts were carried out on 15 and 16 October 2010. Results show that the earlier forecast initial time gives better intensity prediction. The TC intensity in the VT analysis is close to the observation; however, the TC slowly intensifies with less convective bursts (CBs) during the forecast period. By contrast, although the TC intensity in the DP analysis is weaker than the observation during DA period, the TC rapidly intensifies with broader CB areas during the forecast period. Assimilating both types of observation shows positive impacts on not only the TC intensity but also the TC structure. In conclusion, assimilating the axisymmetric surface wind structure can enhance the mean wind structure, and assimilating dropsondes better represents the TC structure, leading to the process of RI.
Barnes, G. M., and P. Fuentes, 2010: Eye excess energy and the rapid intensification of Hurricane Lili (2002). Mon. Wea. Rev., 138, 1446–1458.
Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420–436.
Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 1719–1724.
Chen, H., and D. L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146–162.
Chen, Y., and C. Snyder, 2007: Assimilating vortex position with an Ensemble Kalman Filter. Mon. Wea. Rev., 135, 1828–1845.
Cram, T. A., J. Persing, M. T. Montgomery, and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a highresolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64, 1835–1856.
D’Asaro, E. A. et al., 2014: Impact of typhoons on the ocean in the Pacific: ITOP. Bull. Amer. Meteor. Soc. 95, 1405–1418.
Evensen, G., 1994: Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast error statistic. J. Geophys Res., 99, 143–162.
Evensen, G., 2003: The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343–367.
Hong, S. Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120.
Hong, S. Y., Y. Noh, J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.
Hunt, H. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. Physica D., 230, 112–126.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103.
Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181.
Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. Trans. ASME, Series D, J. Basic Eng., 82, 35–45.
Kalnay, E. D., L. T. Anderson, A. F. Bennett, A. J. Busalacchi, S. E. Cohn, P. Courtier, J. Derber, A. C. Lorenc, D. Parrish, J. Purser, N. Sato, and T. Schlatter, 1997: Data assimilation in the ocean and in the atmosphere: What should be next? J. Meteor. Soc. Japan, 75, 489–496.
Klotz, B. W., and E. W. Uhlhorn, 2014: Improved stepped frequency microwave radiometer tropical cyclone surface winds in heavy precipitation. J. Atmos. Oceanic Technol., 31, 2392–2408.
Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 2030–2045.
Leslie, L. M., and G. J. Holland, 1995: On the bogussing of tropical cyclones in numerical models: A comparison of vortex profiles. Meteor. Atmos. Phys., 56, 101–110.
Lin, K. J., S. C. Yang, and S. S. Chen, 2018: Reducing TC position uncertainty in ensemble data assimilation and prediction system: A case study of Typhoon Fanapi (2010). Wea. Forecasting, in submission.
Miller, R. N., M. Ghil, and F. Gauthiez, 1994: Advanced data assimilation in strongly nonlinear dynamical systems. J. Atmos. Sci., 51, 1037–1056.
Miyamoto, Y., and T. Takemi, 2013: A Transition Mechanism for the Spontaneous Axisymmetric Intensification of Tropical Cyclones. J. Atmos. Sci., 70, 112–129.
Navarro E. L. and G. J. Hakim, 2014: Storm-centered ensemble data assimilation for tropical cyclones. Mon. Wea. Rev. 142, 2309–2320.
Nguyen, M. C., M. J. Reeder, N. E. Davidson, R. K. Smith, and M. T. Montgomery, 2011: Inner-core vacillation cycles during the intensification of Hurricane Katrina. Quart. J. Roy. Meteor. Soc., 137, 829–844.
Poterjoy, J., and F. Zhang, 2011: Dynamics and structure of forecast error covariance in the core of a developing hurricane. J. Atmos. Sci., 68, 1586–1606.
Pu, Z. X., and S. A. Braun, 2001: Evaluation of bogus vortex techniques with four-dimensional variational data assimilation. Mon. Wea. Rev., 129, 2023–2039.
Rogers, R. et al., 2006: The intensity forecasting experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull. Amer. Meteor. Soc., 87, 1523–1537.
Rogers, R. F., P. D. Reasor, and J. A. Zhang, 2015: Multiscale Structure and Evolution of Hurricane Earl (2010) during Rapid Intensification. Mon. Wea. Rev., 143, 536–562.
Shen, W., 2006: Does the size of hurricane eye matter with its intensity? Geophys. Res. Lett., 33, L18813.
Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-4751STR, 113 pp.
Talagrand, O., 1997: Assimilation of observations, an introduction. J. Met. Soc. Japan, 75, 1B, 191–209.
Torn, R. D., and G. J. Hakim, 2009. Ensemble data assimilation applied to RAINEX observations of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 2817–2829.
Uhlhorn, E. W. and P. G. Black, 2003: Verification of remotely sensed sea surface winds in hurricanes. J. Atmos. Oceanic. Tech., 20, 99–116.
Wang, H., and Y. Wang, 2014: Anumerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 29–48.
Willoughby, H. E., 1998: Tropical cyclone eye thermodynamics. Mon. Wea. Rev., 126, 3053–3067.
Willoughby, H. E., R. W. R. Darling, and M. E. Rahn, 2006: Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Wea. Rev., 134, 1102–1120.
Wu, C. C., G. Y. Lien, J. H. Chen, and F. Q. Zhang, 2010: Assimilation of tropical cyclone track and structure based on the Ensemble Kalman Filter (EnKF). J. Atmos. Sci., 67, 3806–3822.
Wu, C. C., W. T. Tu, I. F. Pun, I I. Lin, and M. S. Peng, 2016: Tropical cyclone-ocean interaction in Typhoon Megi (2010) – A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations. J. Geophys. Res. Atmos., 121, 153–167.
Yang, S. C., K. J. Lin, T. Miyoshi, and E. Kalnay, 2013: Improving the spin-up of regional EnKF for typhoon assimilation and forecasting with Typhoon Sinlaku (2008). Tellus A, 65.
Zou, X., and Q. Xiao, 2000: Studies on the initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme. J. Atmos. Sci., 57, 836–860.