| 研究生: |
胡嘉貫 WU KA KUN |
|---|---|
| 論文名稱: |
基於鬼影成像之光聲顯微鏡 Photoacoustic Microscopy Using Ghost Image Reconstruction |
| 指導教授: |
鍾德元
Te-yuan Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 光聲效應 、壓縮感知 、影像辨識 、光聲鬼影顯微成像系統 、凸優化演算法 |
| 外文關鍵詞: | Compressive Sensing Theory, Ghost Imaging system, CS-GI-PAM, convex optimization program |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本研究利用計算式鬼影成像中的壓縮感知理論及鬼影成像系統,結合光聲顯微鏡架構,組建出光聲鬼影顯微成像架構。並利用碳纖維作為樣品還原其光聲影像來驗證光聲鬼影顯微成像系統。
本實驗系統以1064 nm近紅外雷射光源,通過無聚焦系統放大光斑後投影在數位微鏡陣列上,以反射雷射光經過顯微鏡成像在物體表面上,接收產生的光聲訊號並透過壓縮感知理論的Dantzig selector演算法來還原物體的光聲影像。當中系統在Y方向上的點擴散函數半高全寬為3.35 um,X方向上半高全寬為2.78 um,成像系統可解析影像深度約3 um,還原範圍長約101.9 um和寬約64.39 um (共2880像素),在取樣圖案數除基底總數0.22 (660次),便能還原碳纖維的光聲影像,訊號區域平均訊號和非訊號區域平均訊號的比值在2.3以上,而其還原影像理想時間約38秒。
Abstract
This research is using the Compressive Sensing theory(CS theory) and Ghost Imaging system(GI system), combine with Photoacoustic microscopy system(PAM system) to build up as CS-GI-PAM system. Using the Carbon fiber as sample to reconstruct its Photoacoustic image to verify CS-GI-PAM system.
In this study, the Pulse laser, which wavelength is 1064nm, through the afocal system to expend laser beam and project on digital micromirror device. Utilize DMD to reflect laser power distribution and image it on the sample surface, to generate photoacoustic signal and receive signal to resconstruct image. The system Y direction point spread function’s(PSF) full width at half maximum(FWHM) is 3.35 um, X direction PSF’s FWHM is 2.78 um, system imaging depth less than 3 um. The area of the image is 101.9 x 64.39 um(total pixel is 2880). The CS-GI-PAM system can use the fraction of total basis of sampling pattern ratio 0.23(660 pattern) to reconstruct the carbon fiber photoacoustic image and the signal part ratio can higher than 2.3, the rescontruct time costs about 38s.
參考文獻
1. A. G. Bell, "On the production and reproduction of sound by light," in Proc. Am. Assoc. Adv. Sci.(1881), pp. 115-136.
2. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, "Laser-scanning optical-resolution photoacoustic microscopy," Optics letters 34, 1771-1773 (2009).
3. W. Qin, T. Jin, H. Guo, and L. Xi, "Large-field-of-view optical resolution photoacoustic microscopy," Optics express 26, 4271-4278 (2018).
4. J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, "Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner," Scientific reports 5, 7932 (2015).
5. S. Jeon, J. Kim, D. Lee, B. J. Woo, and C. Kim, "Review on practical photoacoustic microscopy," Photoacoustics, 100141 (2019).
6. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, "Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo," IEEE transactions on medical imaging 24, 436-440 (2005).
7. T. Pittman, Y. Shih, D. Strekalov, and A. V. Sergienko, "Optical imaging by means of two-photon quantum entanglement," Physical Review A 52, R3429 (1995).
8. Y. Bromberg, O. Katz, and Y. Silberberg, "Ghost imaging with a single detector," Physical Review A 79, 053840 (2009).
9. O. Katz, Y. Bromberg, and Y. Silberberg, "Compressive ghost imaging," Applied Physics Letters 95, 131110 (2009).
10. M. W. Sigrist, "Laser generation of acoustic waves in liquids and gases," Journal of applied physics 60, R83-R122 (1986).
11. Y.-S. Chen, D. Yeager, and S. Y. Emelianov, "Photoacoustic Imaging for Cancer Diagnosis and Therapy Guidance," in Cancer Theranostics(Elsevier, 2014), pp. 139-158.
12. J. H. Shapiro, "Computational ghost imaging," Physical Review A 78, 061802 (2008).
13. E. J. Candès, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on information theory 52, 489-509 (2006).
14. E. J. Candès, and M. B. Wakin, "An introduction to compressive sampling," IEEE signal processing magazine 25, 21-30 (2008).
15. R. G. Baraniuk, "Compressive sensing [lecture notes]," IEEE signal processing magazine 24, 118-121 (2007).
16. E. J. Candes, "The restricted isometry property and its implications for compressed sensing," Comptes rendus mathematique 346, 589-592 (2008).
17. M. Rani, S. Dhok, and R. Deshmukh, "A systematic review of compressive sensing: Concepts, implementations and applications," IEEE Access 6, 4875-4894 (2018).
18. E. J. Candes, and J. Romberg, "Quantitative robust uncertainty principles and optimally sparse decompositions," Foundations of Computational Mathematics 6, 227-254 (2006).
19. E. Candes, and T. Tao, "Decoding by linear programming," arXiv preprint math/0502327 (2005).
20. E. Candes, and J. Romberg, "Sparsity and incoherence in compressive sampling," Inverse problems 23, 969 (2007).
21. L. Zhang, B. Tang, F. Wang, L. Sun, and X. Ma, "On the Characteristics of Photoacoustic Imaging Based on the Algorithm of Computational Ghost Imaging," Lasers in Engineering (Old City Publishing) 25 (2013).
22. L.-Z. Li, X.-R. Yao, X.-F. Liu, W.-K. Yu, and G.-J. Zhai, "Super-resolution ghost imaging via compressed sensing," (2014).
23. S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization (Cambridge university press, 2004).
24. E. J. Candes, and T. Tao, "Near-optimal signal recovery from random projections: Universal encoding strategies?," IEEE transactions on information theory 52, 5406-5425 (2006).
25. S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM review 43, 129-159 (2001).
26. E. J. Candes, J. K. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences 59, 1207-1223 (2006).
27. E. Candes, and T. Tao, "The Dantzig selector: Statistical estimation when p is much larger than n," The annals of Statistics 35, 2313-2351 (2007).
28. K. Najarian, and R. Splinter, Biomedical signal and image processing (CRC press, 2005).
29. K. W. Busch, and M. A. Busch, Chiral analysis (Elsevier, 2011).
30. N. Otsu, "A threshold selection method from gray-level histograms," IEEE transactions on systems, man, and cybernetics 9, 62-66 (1979).
31. J. Lee Rodgers, and W. A. Nicewander, "Thirteen ways to look at the correlation coefficient," The American Statistician 42, 59-66 (1988).
32. J. Romberg, "L1 magic," https://statweb.stanford.edu/~candes/software/l1magic/
(accessed 03/31, 2020).
33. E. Candes, and J. Romberg, "l1-magic: Recovery of sparse signals via convex programming," URL: www. acm. caltech. edu/l1magic/downloads/l1magic. pdf 4, 14 (2005).
34. R. Berinde, and P. Indyk, "Sparse recovery using sparse random matrices," preprint (2008).
35. H. Wang, Q. Yan, B. Li, C. Yuan, and Y. Wang, "Measurement Matrix Construction for Large-area Single Photon Compressive Imaging," Sensors 19, 474 (2019).
36. K. Wu, and X. Guo, "Compressive sensing with sparse measurement matrices," in 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring)(IEEE2011), pp. 1-5.
37. "DLP4500NIR .45 WXGA Near-Infrared DMD Data Sheet," (Texas Instruments ).
38. K. Elliott, "Keynote Flexlight LC4500-RGB-EKT Electronics Kit User’s Guide," (Copyright © 2016 Keynote Photonics, 06/14/2016).
39. S. Gibson, "simple compressed sensing example," https://www.mathworks.com/matlabcentral/fileexchange/41792-simple-compressed-sensing-example. (accessed 04/22, 2020).
40. "TAIRYFIL Carbon Fiber Data Sheet," http://www.fpc.com.tw/fpcwuploads/pdocument/pdocument_141202152438.pdf. (accessed 05/30, 2020).
41. A. M. Caravaca-Aguirre, S. Singh, S. Labouesse, M. V. Baratta, R. Piestun, and E. Bossy, "Hybrid photoacoustic-fluorescence microendoscopy through a multimode fiber using speckle illumination," APL Photonics 4, 096103 (2019).