| 研究生: |
黃聖中 Sheng-Chung Huang |
|---|---|
| 論文名稱: |
Shewanella oneidensis MR-1於生長遲滯狀態下胞外還原二價汞之機制 Extracellular reduction of Hg(II) by Shewanella oneidensis MR-1 during growth-arrested states |
| 指導教授: |
林居慶
Chu-Ching Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 異化金屬還原菌 、生長遲滯 、胞外電子傳遞 、二價汞還原 、電子梭 |
| 外文關鍵詞: | DMRB, growth-arrested states, extracellular electron transport, Hg(II) reduction, electron shuttles |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
異化金屬還原菌(dissimilatory metal reducing bacteria, DMRB)常驅動自然沉積物系統(即底泥與地下含水層)中的污染物移動與轉化,是極重要的環境微生物族群之一。事實上,某些DMRB如Shewanella oneidensis MR-1已知可在好氧及厭氧環境的低汞濃度下(ppb),進行與汞抗性操作子(mer operon)無關的生物性汞還原作用,但其運作機制截至目前為止仍有待確認。有鑒於深入了解MR-1的汞還原機制對於未來相關環境系統的管理與整治可能有所助益,本研究即以MR-1的Mtr胞外呼吸途徑(即the metal-reducing respiratory patehway)為模型,進行厭氧培養試驗,以探討MR-1在生長遲滯狀態下與溶解性二價汞的互動。試驗結果發現,當菌/汞比log (cell/mol)為17.42時,有最多的汞還原發生(約40%),但當菌/汞比高於18.2時,還原情況則有所抑制,取而代之的是多數Hg(II)與菌表面硫醇(-SH)的結合;而當同時利用MR-1野生菌株,及調控外膜表面多血紅素細胞色素蛋白(MtrC, OmcA)和調控黃素類化合物排出蛋白(bacterial FAD exporter, Bfe)的基因剔除後的突變菌ΔmtrC/omcA與Δbfe為模式生物時,發現MR-1在生長遲滯的狀態下更傾向利用外膜細胞色素蛋白、以直接接觸的方式將Hg(II)還原,因電子穿梭(electron-shuttle)所成的還原效應反而較不顯著,且當調控培養液的主要汞物種,使其由HgEDTA2-轉為更易與表面淨電荷為負電的MR-1細胞接觸的Hg(NH3)32+時,Hg(II)還原情形也有所提升,進一步支持此狀態下直接接觸Hg(II)還原的重要性;當系統額外加入內源性與外源性電子穿梭物riboflavin (1 μM)、AQDS (30 μM)、tetracycline (0.45 μM)時,就統計結果而言均無顯著增加MR-1對Hg(II)的還原情形,再次暗示著MR-1在生長遲滯狀態下可能是以直接接觸主導著Hg(II)的還原作用。不過,若以平均值而言,riboflavin與AQDS仍有略微增加Hg(II)還原的情形,但tetracyclin在不影響MR-1的生長狀態下,並無觀察到任何Hg(II)還原情形變化。有趣的是,當系統內存有不同濃度梯度的溶氣時,氧氣似乎會作為系統內另一電子接受者而影響汞的還原,推斷可能與兩者的還原電位及在系統內的濃度佔比有關。這些結果說明MR-1在不同環境下對胞外的金屬轉化會隨環境變化有所調整,這些策略皆可相當程度的影響汞在環境中的型態轉化與分佈。
Dissimilatory metal reducing bacteria (DMRB) often drive the movement and transformation of pollutants in natural sedimentary systems and are considered one of the most important environmental microorganisms. In fact, some DMRB model strains such as Shewanella oneidensis MR-1 are known to be able to perform biological Hg(II) reduction independent of mer activities in aerobic and anaerobic environments at low Hg(II) concentrations (ppb). Yet, the underlying mechanism is still unclear. Therefore, an in-depth understanding of the mechanism of Hg(II) reduction by MR-1 may improve environmental management in the future. This study uses the metal-reducing respiratory pathway of MR-1 as a model to explore the interaction between cells and soluble Hg(II) during growth-arrested states. It was found that when the cell number to Hg concentration at a log scale was 17.42, Hg(II) reduction was the most significant (~ 40%). However, when the log (cell/mol) was higher than 18.2, Hg(II) reduction was inhibited, and most of the Hg(II) were bound to the bacterial surface thiols (-SH). Using wild-type MR-1 and its mutants as model strains, we observed that extracellular Hg(II) reduction was largely attributed to the direct contact pathway for growth-arrested cells. This direct contact pathway was also supported by the results from the external spike of both endogenous (i.e., 1 μM riboflavin) and exogenous (i.e., 30 μM AQDS and 0.45 μM tetracycline) electron mediating compounds, as well as from the charge manipulation of Hg(II) species, because we did not observe a significant change in the reduction of Hg(II) after adding endogenous or exogenous electron shuttles, and the reduction of Hg(NH3)32+ was significantly higher than that of HgEDTA2- for MR-1. Lastly, the presence of strong oxidizing agents like dissolved oxygen at elevated levels exhibited an inhibiting effect on this microbially-mediated extracellular Hg(II) reduction, which might be due to the inherent higher reduction potential of oxygen and the concentration ratio of oxygen and electron shuttles in the system. Together, this study shows that the reduction of Hg(II) by MR-1 in different environments will be case specific, which can affect the transformation and distribution of mercury in the environment to a considerable extent.
Amyot, M., McQueen, D. J., Mierle, G., & Lean, D. R. (1994). Sunlight-induced formation of dissolved gaseous mercury in lake waters. Environmental Science & Technology, 28(13), 2366-2371.
Amyot, M., Mierle, G., Lean, D., & Mc Queen, D. J. (1997). Effect of solar radiation on the formation of dissolved gaseous mercury in temperate lakes. Geochimica et Cosmochimica Acta, 61(5), 975-987.
Amyot, M., Morel, F. M., & Ariya, P. A. (2005). Dark oxidation of dissolved and liquid elemental mercury in aquatic environments. Environmental Science & Technology, 39(1), 110-114.
Assessment, U. G. M. (2013). Sources, emissions, releases and environmental transport. UNEP Chemicals Branch, Geneva, Switzerland, 42.
Barkay, T., Miller, S. M., & Summers, A. O. (2003). Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews, 27(2-3), 355-384.
Barnes, H. (1997). Geochemistry of Hydrothermal Ore Deposits John Wiley & Sons. New York.
Barringer, J. L., & MacLeod, C. L. (2001). Relation of mercury to other chemical constituents in ground water in the Kirkwood-Cohansey aquifer system, New Jersey Coastal Plain, and mechanisms for mobilization of mercury from sediments to ground water. US Geological Survey Water-Resources Investigations Report 95-4230.
Barringer, J. L., MacLeod, C. L., & Gallagher, R. A. (1997). Mercury in ground water, soils, and sediments of the Kirkwood-Cohansey aquifer system in the New Jersey Coastal Plain. US Geological Survey Open-File Report 95-475.
Barringer, J. L., & Szabo, Z. (2006). Overview of investigations into mercury in ground water, soils, and septage, New Jersey Coastal Plain. Water, Air, and Soil Pollution, 175(1), 193-221.
Barringer, J.L., Szabó, Z.A., Reilly, P.A., 2013. Occurrence and mobility of mercury in groundwater: chapter 5. In: Bradley, P.M. (Ed.), Current Perspectives in Contaminant Hydrology and Water Resources Sustainability. InTech, pp. 117–149.
Barringer, J. L., Szabo, Z., Schneider, D., Atkinson, W. D., & Gallagher, R. A. (2006). Mercury in ground water, septage, leach-field effluent, and soils in residential areas, New Jersey coastal plain. Science of The Total Environment, 361(1-3), 144-162.
Basu, B., & Pick, F. (1997). Factors related to heterotrophic bacterial and flagellate abundance in temperate rivers. Aquatic Microbial Ecology, 12(2), 123-129.
Bergkessel, M., Basta, D. W., & Newman, D. K. (2016). The physiology of growth arrest: uniting molecular and environmental microbiology. Nature Reviews Microbiology, 14(9), 549-562.
Bird, L. J., Bonnefoy, V., & Newman, D. K. (2011). Bioenergetic challenges of microbial iron metabolisms. Trends in Microbiology, 19(7), 330-340.
Bond, D. R., & Lovley, D. R. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology, 69(3), 1548-1555.
Bradley, P., Burns, D., Murray, K., Brigham, M., Button, D., Chasar, L., Marvin-Di‐Pasquale, M., Lowery, M. & Journey, C.A. (2011). Spatial and seasonal variability of dissolved methylmercury in two stream basins in the eastern United States. Environmental Science & Technology, 45, 2048-2055.
Brutinel, E. D., & Gralnick, J. A. (2012). Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Applied Microbiology and Biotechnology, 93(1), 41-48.
Brutinel, E. D., & Gralnick, J. A. (2013). On the role of endogenous electron shuttles in extracellular electron transfer. In Microbial Metal Respiration (pp. 83-105): Springer.
Campagnolo, E. R., Johnson, K. R., Karpati, A., Rubin, C. S., Kolpin, D. W., Meyer, M. T., Esteban J. E., Currier R. W., Smith, K., Thu, K. M. (2002). Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations. Science of The Total Environment, 299(1-3), 89-95.
Cao, B., Shi, L., Brown, R. N., Xiong, Y., Fredrickson, J. K., Romine, M. F., Marshall, M. J., Lipton, M. S., Beyenal, H. (2011). Extracellular polymeric substances from Shewanella sp. HRCR‐1 biofilms: characterization by infrared spectroscopy and proteomics. Environmental Microbiology, 13(4), 1018-1031.
Chen, J., Gu, B., Royer, R. A., & Burgos, W. D. (2003). The roles of natural organic matter in chemical and microbial reduction of ferric iron. Science of The Total Environment, 307(1-3), 167-178.
Choi, O., Um, Y., & Sang, B. I. (2012). Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor. Biotechnology and Bioengineering, 109(10), 2494-2502.
Cole, J. J., Pace, M. L., Caraco, N. F., & Steinhart, G. S. (1993). Bacterial biomass and cell size distributions in lakes: more and larger cells in anoxic waters. Limnology and Oceanography, 38(8), 1627-1632.
Colombo, M. J., Ha, J., Reinfelder, J. R., Barkay, T., & Yee, N. (2014). Oxidation of Hg (0) to Hg (II) by diverse anaerobic bacteria. Chemical Geology, 363, 334-340.
Coursolle, D., Baron, D. B., Bond, D. R., & Gralnick, J. A. (2010). The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. Journal of Bacteriology, 192(2), 467-474.
Coursolle, D., & Gralnick, J. A. (2010). Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR‐1. Molecular Microbiology, 77(4), 995-1008.
Covington, E. D., Gelbmann, C. B., Kotloski, N. J., & Gralnick, J. A. (2010). An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis. Molecular Microbiology, 78(2), 519-532.
Engstrom, D. R., Balogh, S. J., & Swain, E. B. (2007). History of mercury inputs to Minnesota lakes: influences of watershed disturbance and localized atmospheric deposition. Limnology and Oceanography, 52(6), 2467-2483.
Fan, Y., Hu, H., & Liu, H. (2007). Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. Journal of Power Sources, 171(2), 348-354.
Fitzgerald, W. & Lamborg, C.H. (2007). Geochemistry of mercury in the environment.
107-148. In: Environmental Geochemistry, V. 9; Lollar, B.S. (ed.), Oxford, Elsevier.
Fredrickson, J. K., Romine, M. F., Beliaev, A. S., Auchtung, J. M., Driscoll, M. E., Gardner, T. S., Nealson, K.H., Osterman, A.L., Pinchuk, G., Reed, J. L. (2008). Towards environmental systems biology of Shewanella. Nature Reviews Microbiology, 6(8), 592-603.
Glasauer, S., Weidler, P. G., Langley, S., & Beveridge, T. J. (2003). Controls on Fe reduction and mineral formation by a subsurface bacterium. Geochimica et Cosmochimica Acta, 67(7), 1277-1288.
Gralnick, J. A., & Newman, D. K. (2007). Extracellular respiration. Molecular Microbiology, 65(1), 1-11.
Gorby, Y. A., Caccavo, F., & Bolton, H. (1998). Microbial reduction of cobaltIIIEDTA-in the presence and absence of manganese (IV) oxide. Environmental Science & Technology, 32(2), 244-250.
Gorby, Y. A., & Lovley, D. R. (1992). Enzymic uranium precipitation. Environmental Science & Technology, 26(1), 205-207.
Grassi, S., & Netti, R. (2000). Sea water intrusion and mercury pollution of some coastal aquifers in the province of Grosseto (Southern Tuscany—Italy). Journal of Hydrology, 237(3-4), 198-211.
Groh, J. L., Luo, Q., Ballard, J. D., & Krumholz, L. R. (2007). Genes that enhance the ecological fitness of Shewanella oneidensis MR-1 in sediments reveal the value of antibiotic resistance. Applied and Environmental Microbiology, 73(2), 492-498.
Hartshorne, R. S., Reardon, C. L., Ross, D., Nuester, J., Clarke, T. A., Gates, A. J., Mills P. C., Fredrickson, J. K., Zachara, J. M., Shi, L. Beliaev, A. S.; Marshall, M. J.; Tien, M.; Brantley, S.; Butt, J. N.; Richardson, D. J. (2009). Characterization of an electron conduit between bacteria and the extracellular environment. Proceedings of the National Academy of Sciences, 106(52), 22169-22174.
Haveman, S. A., & Pedersen, K. (2002). Distribution of culturable microorganisms in Fennoscandian Shield groundwater. FEMS Microbiology Ecology, 39(2), 129-137.
Hepler, L. G., & Olofsson, G. (1975). Mercury. Thermodynamic properties, chemical equilibriums, and standard potentials. Chemical Reviews, 75(5), 585-602.
Hernandez, M., & Newman, D. (2001). Extracellular electron transfer. Cellular and Molecular Life Sciences CMLS, 58(11), 1562-1571.
Hernandez, M. E., Kappler, A., & Newman, D. K. (2004). Phenazines and other redox-active antibiotics promote microbial mineral reduction. Applied and Environmental Microbiology, 70(2), 921-928.
Hu, H., Lin, H., Zheng, W., Rao, B., Feng, X., Liang, L., Elias, D.A., Gu, B. (2013). Mercury reduction and cell-surface adsorption by Geobacter sulfurreducens PCA. Environmental Science & Technology, 47(19), 10922-10930.
Jiang, J., & Kappler, A. (2008). Kinetics of microbial and chemical reduction of humic substances: implications for electron shuttling. Environmental Science & Technology, 42(10), 3563-3569.
Kees, E. D., Pendleton, A. R., Paquete, C. M., Arriola, M. B., Kane, A. L., Kotloski, N. J., ntile, P. J., Gralnick, J. A. (2019). Secreted flavin cofactors for anaerobic respiration of fumarate and urocanate by Shewanella oneidensis: cost and role. Applied and Environmental Microbiology, 85(16), e00852-00819.
Kersting, A., Efurd, D., Finnegan, D., Rokop, D., Smith, D., & Thompson, J. (1999). Migration of plutonium in ground water at the Nevada Test Site. Nature, 397(6714), 56-59.
Khatiwada, N., Takizawa, S., Tran, T., & Inoue, M. (2002). Groundwater contamination assessment for sustainable water supply in Kathmandu Valley, Nepal. Water Science and Technology, 46(9), 147-154.
Koterba, M. T., Andres, A. S., Vrabel, J., Crilley, D. M., Szabo, Z., DeWild, J. F., Aiken, G. R., Reyes-Padro, B. (2006). Occurrence and Distribution of Mercury in the SurficialAquifer, Long Neck Peninsula, Sussex County, Delaware, 2003-2004 (2328-0328). U.S. Geological Survey Scientific Investigations Report.
Kotloski, N. J. (2014). Export and role of flavin electron shuttles in Shewanella oneidensis Strain MR-1. University of Minnesota
Kotloski, N. J., & Gralnick, J. A. (2013). Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. MBio, 4(1), e00553-00512.
Krabbenhoft, D. P., & Babiarz, C. L. (1992). The role of groundwater transport in aquatic mercury cycling. Water Resources Research, 28(12), 3119-3128.
Kretzschmar, R., & Schafer, T. (2005). Metal retention and transport on colloidal particles in the environment. Elements, 1(4), 205-210.
Lamborg, C. H., Hammerschmidt, C. R., Bowman, K. L., Swarr, G. J., Munson, K. M., Ohnemus, D. C., Lam, P.J., Heimburger,L.-E., Rijkenberg, M.J., Saito, M. A. (2014). A global ocean inventory of anthropogenic mercury based on water column measurements. Nature, 512(7512), 65-68.
Lamborg, C. H., Kent, D. B., Swarr, G. J., Munson, K. M., Kading, T., O’Connor, A. E., Fairchild, G. M., LeBlanc, D. R., Wiatrowski, H. A. (2013). Mercury speciation and mobilization in a wastewater-contaminated groundwater plume. Environmental Science & Technology, 47(23), 13239-13249.
Lies, D. P., Hernandez, M. E., Kappler, A., Mielke, R. E., Gralnick, J. A., & Newman, D. K. (2005). Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Applied and Environmental Microbiology, 71(8), 4414-4426.
Lin, C. C., Yee, N., & Barkay, T. (2012). Microbial transformations in the mercury cycle. Environmental chemistry and toxicology of mercury, 155-191.
Lin, H., Morrell-Falvey, J. L., Rao, B., Liang, L., & Gu, B. (2014). Coupled mercury–cell sorption, reduction, and oxidation on methylmercury production by Geobacter sulfurreducens PCA. Environmental Science & Technology, 48(20), 11969-11976.
Liu, C., Gorby, Y. A., Zachara, J. M., Fredrickson, J. K., & Brown, C. F. (2002). Reduction kinetics of Fe (III), Co (III), U (VI), Cr (VI), and Tc (VII) in cultures of dissimilatory metal‐reducing bacteria. Biotechnology and Bioengineering, 80(6), 637-649.
Liu, H., & Logan, B. E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 38(14), 4040-4046.
Lloyd, J., & Macaskie, L. (1996). A novel PhosphorImager-based technique for monitoring the microbial reduction of technetium. Applied and Environmental Microbiology, 62(2), 578-582.
Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S.,Aelterman, P., Verstraete, W., Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environmental Science & Technology, 40(17), 5181-5192.
Lovley, D. R. (1993). Dissimilatory metal reduction. Annual Review of Microbiology, 47(1), 263-290.
Lovley, D. R., Phillips, E. J., Gorby, Y. A., & Landa, E. R. (1991). Microbial reduction of uranium. Nature, 350(6317), 413-416.
Lower, B. H., Shi, L., Yongsunthon, R., Droubay, T. C., McCready, D. E., & Lower, S. K. (2007). Specific bonds between an iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1. Journal of Bacteriology, 189(13), 4944-4952.
Lu, M., Chan, S., Babanova, S., & Bretschger, O. (2017). Effect of oxygen on the per‐cell extracellular electron transfer rate of Shewanella oneidensis MR‐1 explored in bioelectrochemical systems. Biotechnology and Bioengineering, 114(1), 96-105.
Maier, T. M., Myers, J. M., & Myers, C. R. (2003). Identification of the gene encoding the sole physiological fumarate reductase in Shewanella oneidensis MR‐1. Journal of Basic Microbiology: An International Journal on Biochemistry, Physiology, Genetics, Morphology, and Ecology of Microorganisms, 43(4), 312-327.
Marritt, S. J., McMillan, D. G., Shi, L., Fredrickson, J. K., Zachara, J. M., Richardson, D. J.,Jeuken, L.J., Butt, J. N. (2012). The roles of CymA in support of the respiratory flexibility of Shewanella oneidensis MR-1. Biochemical Society Transactions. 40, 1217−1221.
Marsili, E., Baron, D. B., Shikhare, I. D., Coursolle, D., Gralnick, J. A., & Bond, D. R. (2008). Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences, 105(10), 3968-3973.
Martin, R., Witt, M., Sawyer, G., Thomas, H., Watt, S., Bagnato, E., Calabrese, S., Aiuppa, A., Delmelle, P., Pyle, D. M. (2012). Bioindication of volcanic mercury (Hg) deposition around Mt. Etna (Sicily). Chemical Geology, 310, 12-22.
Mishra, B., O’Loughlin, E. J., Boyanov, M. I., & Kemner, K. M. (2011). Binding of HgII to high-affinity sites on bacteria inhibits reduction to Hg0 by mixed FeII/III phases. Environmental Science & Technology, 45(22), 9597-9603.
Mishra, B., Shoenfelt, E., Yu, Q., Yee, N., Fein, J. B., & Myneni, S. C. (2017). Stoichiometry of mercury-thiol complexes on bacterial cell envelopes. Chemical Geology, 464, 137-146.
Myers, C. R., & Myers, J. M. (1992). Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. Journal of Bacteriology, 174(11), 3429-3438.
Myers, C. R., & Nealson, K. H. (1988). Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science, 240(4857), 1319-1321.
Nealson, K. H., & Saffarini, D. (1994). Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annual Review of Microbiology, 48(1), 311-343.
Nealson, K. H., & Scott, J. (2006). Ecophysiology of the genus Shewanella. The Prokaryotes, 6, 1133-1151.
Nevin, K. P., & Lovley, D. R. (2000). Lack of production of electron-shuttling compounds or solubilization of Fe (III) during reduction of insoluble Fe (III) oxide by Geobacter metallireducens. Applied and Environmental Microbiology, 66(5), 2248-2251.
Nevin, K. P., & Lovley, D. R. (2002). Mechanisms for Fe (III) oxide reduction in sedimentary environments. Geomicrobiology Journal, 19(2), 141-159.
Newman, D. K. (2009). From Iron Oxides to Infections. ChemSusChem: Chemistry & Sustainability Energy & Materials, 2(5), 380-382.
Newman, D. K., & Kolter, R. (2000). A role for excreted quinones in extracellular electron transfer. Nature, 405(6782), 94-97.
Nurmi, J. T., & Tratnyek, P. G. (2002). Electrochemical properties of natural organic matter (NOM), fractions of NOM, and model biogeochemical electron shuttles. Environmental Science & Technology, 36(4), 617-624.
Ollig, J., Kloubert, V., Weßels, I., Haase, H., & Rink, L. (2016). Parameters influencing zinc in experimental systems in vivo and in vitro. Metals, 6(3), 71.
Pacyna, E. G., Pacyna, J. M., Fudala, J., Strzelecka-Jastrzab, E., Hlawiczka, S., & Panasiuk, D. (2006). Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Science of The Total Environment, 370(1), 147-156.
Patra, M., & Sharma, A. (2000). Mercury toxicity in plants. The Botanical Review, 66(3), 379-422.
Pealing, S. L., Black, A. C., Manson, F. D., Ward, F. B., Chapman, S. K., & Reid, G. A. (1992). Sequence of the gene encoding flavocytochrome c from Shewanella putrefaciens: a tetraheme flavoenzyme that is a soluble fumarate reductase related to the membrane-bound enzymes from other bacteria. Biochemistry, 31(48), 12132-12140.
Pedersen, K., Arlinger, J., Eriksson, S., Hallbeck, A., Hallbeck, L., & Johansson, J. (2008). Numbers, biomass and cultivable diversity of microbial populations relate to depth and borehole-specific conditions in groundwater from depths of 4–450 m in Olkiluoto, Finland. The ISME Journal, 2(7), 760-775.
Peretyazhko, T., Charlet, L., Muresan, B., Kazimirov, V., & Cossa, D. (2006). Formation of dissolved gaseous mercury in a tropical lake (Petit-Saut reservoir, French Guiana). Science of The Total Environment, 364(1-3), 260-271.
Poulain, A., Amyot, M., Findlay, D., Telor, S., Barkay, T., & Hintelmann, H. (2004). Biological and photochemical production of dissolved gaseous mercury in a boreal lake. Limnology and Oceanography, 49(6), 2265-2275.
Protano, G., Riccobono, F., & Sabatini, G. (2000). Does salt water intrusion constitute a mercury contamination risk for coastal fresh water aquifers? Environmental Pollution, 110(3), 451-458.
Quan, X.-c., Quan, Y.-p., & Tao, K. (2012). Effect of anode aeration on the performance and microbial community of an air–cathode microbial fuel cell. Chemical Engineering Journal, 210, 150-156.
Rao, B., Simpson, C., Lin, H., Liang, L., & Gu, B. (2014). Determination of thiol functional groups on bacteria and natural organic matter in environmental systems. Talanta, 119, 240-247.
Reguera, G., McCarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T., & Lovley, D. R. (2005). Extracellular electron transfer via microbial nanowires. Nature, 435(7045), 1098-1101.
Roden, E. E., & Zachara, J. M. (1996). Microbial reduction of crystalline iron (III) oxides: influence of oxide surface area and potential for cell growth. Environmental Science & Technology, 30(5), 1618-1628.
Ross, D. E., Flynn, J. M., Baron, D. B., Gralnick, J. A., & Bond, D. R. (2011). Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS One, 6(2), e16649.
Ross, D. E., Ruebush, S. S., Brantley, S. L., Hartshorne, R. S., Clarke, T. A., Richardson, D. J., & Tien, M. (2007). Characterization of protein-protein interactions involved in iron reduction by Shewanella oneidensis MR-1. Applied and Environmental Microbiology, 73(18), 5797-5808.
Rosso, K. M., Zachara, J. M., Fredrickson, J. K., Gorby, Y. A., & Smith, S. C. (2003). Nonlocal bacterial electron transfer to hematite surfaces. Geochimica et Cosmochimica Acta, 67(5), 1081-1087.
Ryan, J. N., & Gschwend, P. M. (1994). Effect of solution chemistry on clay colloid release from an iron oxide-coated aquifer sand. Environmental Science & Technology, 28(9), 1717-1726.
Schaefer, J. K., Letowski, J., & Barkay, T. (2002). mer-mediated resistance and volatilization of Hg (II) under anaerobic conditions. Geomicrobiology Journal, 19(1), 87-102.
Schuster, P. F., Shanley, J. B., Marvin-Dipasquale, M., Reddy, M. M., Aiken, G. R., Roth, D. A., Taylor, H. E., Krabbenhoft, D. P., DeWild, J. F. (2008). Mercury and organic carbon dynamics during runoff episodes from a northeastern USA watershed. Water, Air, and Soil Pollution, 187(1), 89-108.
Scott, D. T., McKnight, D. M., Blunt-Harris, E. L., Kolesar, S. E., & Lovley, D. R. (1998). Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environmental Science & Technology, 32(19), 2984-2989.
Shi, L., Rosso, K. M., Clarke, T. A., Richardson, D. J., Zachara, J. M., & Fredrickson, J. K. (2012). Molecular underpinnings of Fe (III) oxide reduction by Shewanella oneidensis MR-1. Frontiers in Microbiology, 3, 50.
Shi, L., Squier, T. C., Zachara, J. M., & Fredrickson, J. K. (2007). Respiration of metal (hydr) oxides by Shewanella and Geobacter: a key role for multihaem c‐type cytochromes. Molecular Microbiology, 65(1), 12-20.
Shyu, J. B. H., Lies, D. P., & Newman, D. K. (2002). Protective role of tolC in efflux of the electron shuttle anthraquinone-2, 6-disulfonate. Journal of Bacteriology, 184(6), 1806-1810.
Sidle, W. (1993). Naturally occurring mercury contamination in a pristine environment? Environmental Geology, 21(1-2), 42-50.
Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions: John Wiley & Sons. New York. 496 p.
Szczuka, A., Morel, F. M., & Schaefer, J. K. (2015). Effect of thiols, zinc, and redox conditions on Hg uptake in Shewanella oneidensis. Environmental Science & Technology, 49(12), 7432-7438.
TerAvest, M. A., Rosenbaum, M. A., Kotloski, N. J., Gralnick, J. A., & Angenent, L. T. (2014). Oxygen allows Shewanella oneidensis MR‐1 to overcome mediator washout in a continuously fed bioelectrochemical system. Biotechnology and Bioengineering, 111(4), 692-699.
Turner, K., Doherty, M. K., Heering, H., Armstrong, F., Reid, G. A., & Chapman, S. K. (1999). Redox properties of flavocytochrome c 3 from Shewanella frigidimarina NCIMB400. Biochemistry, 38(11), 3302-3309.
Von Canstein, H., Ogawa, J., Shimizu, S., & Lloyd, J. R. (2008). Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Applied and Environmental Microbiology, 74(3), 615-623.
Wang, Q., Kim, D., Dionysiou, D. D., Sorial, G. A., & Timberlake, D. (2004). Sources and remediation for mercury contamination in aquatic systems—a literature review. Environmental Pollution, 131(2), 323-336.
Wang, Y., Freedman, Z., Lu-Irving, P., Kaletsky, R., & Barkay, T. (2009). An initial characterization of the mercury resistance (mer) system of the thermophilic bacterium Thermus thermophilus HB27. FEMS Microbiology Ecology, 67(1), 118-129.
Wiatrowski, H. A., Ward, P. M., & Barkay, T. (2006). Novel reduction of mercury (II) by mercury-sensitive dissimilatory metal reducing bacteria. Environmental Science & Technology, 40(21), 6690-6696.
Wildung, R. E., Gorby, Y. A., Krupka, K. M., Hess, N. J., Li, S., Plymale, A. E., McKinley, J. P., Fredrickson, J. K. (2000). Effect of electron donor and solution chemistry on products of dissimilatory reduction of technetium by Shewanella putrefaciens. Applied and Environmental Microbiology, 66(6), 2451-2460.
Yin, J., Sun, L., Dong, Y., Chi, X., Zhu, W., Qi, S.-h., & Gao, H. (2013). Expression of blaA underlies unexpected ampicillin-induced cell lysis of Shewanella oneidensis. PLoS One, 8(3), e60460.
Yu, Q., Szymanowski, J., Myneni, S. C., & Fein, J. B. (2014). Characterization of sulfhydryl sites within bacterial cell envelopes using selective site-blocking and potentiometric titrations. Chemical Geology, 373, 50-58.
Yu, R.-Q., Flanders, J., Mack, E. E., Turner, R., Mirza, M. B., & Barkay, T. (2012). Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments. Environmental Science & Technology, 46(5), 2684-2691.
Zhang, L., Wright, L. P., & Blanchard, P. (2009). A review of current knowledge concerning dry deposition of atmospheric mercury. Atmospheric Environment, 43(37), 5853-5864.
Zheng, W., Liang, L., & Gu, B. (2012). Mercury reduction and oxidation by reduced natural organic matter in anoxic environments. Environmental Science & Technology, 46(1), 292-299.
Zheng, W., Lin, H., Mann, B. F., Liang, L., & Gu, B. (2013). Oxidation of dissolved elemental mercury by thiol compounds under anoxic conditions. Environmental Science & Technology, 47(22), 12827-12834.
王詩芸. (2016). 吸附汞之三價鐵礦於生物還原溶解過程中元素汞的生成與移動潛勢. (碩士), 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/rdhqgf
陳詠菁. (2018). Shewanella oneidensis MR-1 於水相均質系統中還原二價汞之機制探討. (碩士), 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/5rvxq8
廖炳傑. (2014). 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響. (碩士), 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/bamgdm