| 研究生: |
洪立彥 Li-yan Hong |
|---|---|
| 論文名稱: |
New RC梁撓曲剪力行為研究 Flexural Shear Behavior of New RC Beams |
| 指導教授: |
王勇智
Yung-chih Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 225 |
| 中文關鍵詞: | 台灣New RC 、高強度鋼筋 、高強度混凝土 、矩形梁 、剪力跨度 、箍筋間距 、耐震設計 、反覆加載 、耐震行為 |
| 外文關鍵詞: | Rectangular beams, Shear Span, Spacing of Hoops |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,國家地震工程研究中心推行台灣新型高強度鋼筋混凝土結構系統研發計畫(簡稱Taiwan New RC計畫)。本研究配合Taiwan New RC計畫,設計三組高強度矩形懸臂梁試體(a/d=3.0),透過反覆加載試驗,探討不同剪力筋間距下 (s= d, d/2, d/4) ,試體耐震行為的差異,並討論相同配置之三組普通強度試體之間的差異。
由試驗結果得知,以ITG-4.3R計算New RC試體的標稱撓曲強度,會比傳統ACI 318方法較具準確性。而標稱剪力強度評估方面,高強度與普通強度試體均較為保守。由於ACI 318耐震設計篇,假設梁塑鉸區混凝土剪力貢獻為零,以及斜裂縫角為45°的假設較實際量測為大所致。
比較箍筋間距均為d/4之高強度與普通強度試體的破壞模式,在DR=4%時,兩者(高強度與普通強度試體)均為撓曲破壞行為。但在最終DR=7%時,普通強度試體(d/4)在距離固定端d/2之梁腹處,有混凝土壓桿壓碎的現象。高強度試體之初始勁度與普通強度試體相當,但在韌性行為以及抗剪表現方面,則是以高強度試體為佳。
In recent years, the National Center for Research on Earthquake Engineering (NCREE) has launched the Taiwan New RC Project. This study belonged to one of topics New RC project. This study designed six rectangular cantilever beams (three New RC and three Normal RC) with a/d=3.0 and different hoop spacings (s= d, d/2, d/4). The objective of this study is to investigate the seismic behavior of these specimens.
Test results indicated that predicted flexural strength using ITG-4.3R method was suitable for New RC beams. However, the nominal shear strength was conservative because the seismic specification in ACI 318 assumed that Vc is zero in the plastic hinge zone and the inclination of diagonal crack is 45°, which is larger than measured values.This study also discussed the differences in seismic behavior between New RC and Normal RC specimens.
At DR(drift ratio)=4%, the concrete compression crushing of what we called flexural failure was occurred at beam fixed and for both New RC and Normal RC beams. However, at the end of test DR=7%, the failure mode for Normal RC beam with hoop spacing d/4 turned to diagonal concrete struct compression failure occurred in the web d/2 away from the beam fixed end, This failure mode of the Normal RC beam at the end of test is slightly diffenent from the New RC beam.
The initial stiffness of New RC beams is similar to that of Normal RC beams. Nevertheless, the performance of New RC beams in flexural ductility and shear resistance is better than Normal RC beams.
[1] ACI Committee 318, Building Code Requirement for Structural Concrete, ACI318-11 & Commentary, American Concrete Institute, 2011.
[2] NZS3101, Concrete Structures Standard, The design of Concrete Structures & Commentary on the Design of Concrete Structures, New Zealand Standard, 2006.
[3] Architectural Institute of Japan, Design Guidelines for Earthquake Resistant Reinforced Concrete Buildings Based on Inelastic Displacement Concept, Tokyo, 1999.
[4] Sung-Woo Shin, “Shear Strength of Reinforced High-Strength ConcreteBeams with Shear Span-to-Depth Ratios between 1.5 and 2.5,” ACI Structural Journal, V.96, No.2, Jul-Aug. 1999, pp. 549-556.
[5] Zsutty, T. C., “Shear Strength Prediction for Separate Categories of Simple Beam Tests,” ACI Journal Proceedings V. 68, No. 2, Feb. 1977, pp. 139-143.
[6] Watanabe, F., and Jung-Yoon Lee, “Shear Design of Reinforced Concrete Beams with Shear Reinforcement Considering Failure Modes,” ACI Structural Journal, V.97, No.3, May-Jun. 2000, pp. 477-484.
[7] Paulay, T., and Priestley, M.J.N., Seismic Design of Reinforced Concrete and Masonry Building, John Wiley & Sons, New York, 1992.
[8] ACI Committee 374, Acceptance Criteria for Moment Frames Based on structural Testing and Commentary (ACI 374.1-05), American Concrete Institute, Farmington Hills, MI, 2005, pp. 1-9.
[9] Kavitha, P.E., “Strain Transformation and Rosette Gage Theory” Georgia Institute of Technology School of Aerospace Engineering, AE3145 Laboratory, 2009, pp. 1-7.
[10] Jung-Yoon Lee, “Shear Behavior of Reinforced Concrete Beams with High Strength Stirrups,” ACI Structural Journal, V.108, No.5, Sep-Oct. 2011, pp. 620-629.
[11] Watanabe, F., “Theoretical Prediction of Shear Strength and Failure Mode of Reinforced Concrete Beams,” ACI Structural Journal, V.95, No.6, Nov-Dec. 1997, pp. 749-757.
[12] Watanabe, F., “Shear Deterioration of Reinforced Concrete Beams Subjected to Reversed Cyclic Loading,” ACI Structural Journal, V.100, No.4, Jul-Aug. 2003, pp. 480-489.
[13] Iwai, I.; Enomoto, H.; Watanabe, F.; and Muguruma, H., “Shear Strength of High-Strength Concrete Beams, Part 1 and Part 2,” Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, 1991, pp. 269-272.
[14] Matsuzaki, Y.; Nakano, K.; Iso, M.; and Watanabe, H., “Experimental Thesis on Shear Characteristic of RC Beams with High Tension Shear Reinforcement,” JCI Proceedings, V. 12, No. 2, 1990, pp.325-328.
[15] Kokusho, S.; Kobayashi, K.; Mitsugi, S.; and Kumagai, H., “Ultimate Shear Strength of RC Beams with High Tension Shear Reinforcement and High-Strength Concrete,” Journal of Structural Construction Engineering, AIJ, No. 373, 1987, pp. 83-91.
[16] Sakakuti, N. et al. “Flexural and Shear Strength of Short Span Beams Using Ultra High-Strength Reinforced Concrete, Part 2 Shear Behavior of Beams,” Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, 1987. 10, pp. 69-70.
[17] Fukuhara, M., and Kokusho, S., “Effectiveness of High Tension Shear Reinforcement in Reinforced Concrete Members,” Journal of Structural Construction Engineering, AIJ, No. 320, 1982, pp. 12-20.
[18] 陳信豪,「普通強度鋼筋混凝土梁撓曲剪力行為研究」,國立中央大學,碩士論文,民國一百零三年。
[19] 中華民國結構工程學會,房屋結構鋼筋施工綱要與品管,民國一百零二年。
[20] 中國土木水利工程學會,混凝土工程設計規範與解說,土木401-100,民國一百年。
[21] 經濟部標準檢驗局,土木材料及品質管理相關國家標準(CNS規範),民國九十七年。
[22] 內政部建築研究所,「精簡報告-超高強度鋼筋混凝土建築結構設計施工審核要項之研擬」,民國一百零二年。
[23] 內政部建築研究所,「摘要報告-超高強度鋼筋混凝土建築設計施工指針之研擬」,民國九十九年。
[24] 財團法人國家實驗研究院國家地震工程研究中心,「新世代超高強度鋼筋混凝土結構系統研發」,民國一百年。
[25] ACI Innovation Task Group 4 and Other Contributors, 2007, “Report on Structural Design and Detailing for High-Strength Concrete in Moderate to High Seismic Applications, ACI-ITG-4.3R-07”,American Concrete Institute, Farmington Hills, MI, 62 pp.