| 研究生: |
王思遠 Sz-yuan Wang |
|---|---|
| 論文名稱: |
自組裝複合式鍺量子點成長機制及其應用之研究 Investigating the Growth Mechanism of Self-Assembled Composite Germanium Quantum Dots and its Applications |
| 指導教授: |
李勝偉
Sheng-wei Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 熱電效應 、超高真空化學氣相沉積 、量子點 、自組裝 、矽鍺 |
| 外文關鍵詞: | UHV/CVD, Quantum dot, Self-assembled, SiGe, Thermal effect |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自組裝鍺量子點在近年來已引起廣泛之興趣,矽鍺之量子點,量子井及矽鍺緩衝層的成長已在多處被開發及研究,其中在光電材料、熱電材料與電子元件,亦有許多的應用。本研究更進一步探討複合式鍺量子點之形成機制,因為對複合式鍺量子點之導電、導熱以及熱電優值等物理特性,與其形貌結構、應力狀態、成份分佈、生長條件有著密不可分的關係。
總結上述之分析,本研究探討以超高真空化學氣相沉積系統所製備出之不同溫度、沉積時間及氣流之高品質矽鍺量子點,其結構包含傳統式矽鍺量子點、複合式鍺卅矽卅鍺量子點及三重複合式鍺卅矽卅鍺卅矽卅鍺量子點,並將量子點經退火處理及改變其中矽嵌入層之厚度。以高選擇性濕式化學蝕刻溶液搭配原子力顯微鏡、穿透式電子顯微鏡和拉曼光譜儀針對矽鍺量子點之內部矽鍺相互擴散之成份分佈、表面形態、原子排列以及應力狀態深入之分析,進而控制量子點將此研究結果應用至元件上,經由量測可以得知複合式鍺量子點在熱電元件的製作是具有未來發展的可能性。
In recent years, quantum dots have been on the rise in the self-assembling processes. For optoelectronic materials, thermoelectric materials and electronic devices applications, the quantum dots, quantum wells and SiGe buffer layer structures have been developed and studied in various ways. Because of the physical properties, such as electrical conductivity and thermal conductivity of the germanium quantum dots are strongly influenced by morphology, composition, strain condition and growth conditions. The formation mechanism of the germanium quantum dots needs to be further studied.
Therefore, this research investigated high-quality SiGe quantum dots at various temperatures, deposition time and carrying gas by ultrahigh vacuum chemical vapor deposition system. The structure included the conventional SiGe quantum dots, composite Ge/Si/Ge quantum dots and triple Ge/Si/Ge/Si/Ge quantum dots. All these three types of quantum dots were performed further annealing treatment or decreased the silicon insert layer thickness. It showed that highly selective wet etching combined with the atomic force microscopy (AFM), transmission electron microscopy (TEM) and Raman spectrum can be used to obtain useful information, which was pertaining to the composition distribution, surface morphology, atomic arrangement and strain condition of the SiGe quantum dots interdiffusion.
Finally, the results of these controllable quantum dots structures in this research can be further applied to the electronic devices. The outcome of the experiments demonstrated that composite germanium quantum dots would be potentially valuable as a new thermoelectric material.
1.1 T. Caillat and J. –P. Fleurial, “Zn-Sb alloys for thermoelectric power generation,” Energy Conversion Engineering Conference, IECEC 96., Pr℃eedings of the 31st Inters℃iety 2, 905-909 (1996).
1.2 C. –Y. Peng, F. Yuan, C. –Y. Yu, P. –S. Kuo, M. H. Lee, S. Maikap, C. –H. Hsu, and C. W. Liu, “Hole mobility enhancement of Si0.2Ge0.8 quantum well channel on Si,” Appl. Phys. Lett. 90, 012114 (2007).
1.3 M. D. Kim, S. K. Noh, S. C. Hong, and T. W. Kim, “Formation and optical properties of InAs/GaAs quantum dots for applications as infrared photodetectors operating at room temperature,” Appl. Phys. Lett. 82, 553-555 (2003).
1.4 Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, and Yu. Yu. Skuryakov, “Interlevel Ge/Si quantum dot infrared photodetector,” J. Appl. Phys. 89, 5676 (2001).
1.5 J. Chen, K. K. Choi, W. H. Chang, and D. C. Tsui, “Two-color corrugated quantum-well infrared photodetector for remote temperature sensing,” Appl. Phys. Lett. 72, 7 (1998).
1.6 T. J. Seebeck, “Magnetische polarization der metalle und erzedurch temperature- differenze. Abhand deut,” Akad. Wiss. Berlin, 265-373 (1821).
1.7 J. C. Peltier, “Nouvelles experiences sur la caloriecete des courans electriques,” Ann. Chem. LVI, 371-387 (1834).
1.8 H. J. Goldsmid and R.W. Douglas, “The use of semiconductors in thermoelectric refrigeration,” Br. J. Appl. Phys. 5, 386-390 (1954).
1.9 F. Ioffe, “Semiconductor thermoelements and thermoelectric cooling,” Infosearch, London, (1957).
1.10 J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, “Bulk nanostructured thermoelectric materials: current research and future prospects,” Energy Environ. Sci. 2, 466-479 (2009).
1.11 E. A. Skrabek and J. W. McGrew, “Pioneer 10 and 11 RTG performance update,” in Space Nuclear Power Systems 1987, 7, Orbit Book Co., Malabar, Florida, 587 (1988).
1.12 Kittel, “Introduction to solid state physics,” 8th edition, John Wiley & Sons, Inc (2005).
1.13 R. Richman, “Prospects for efficient thermoelectric materials in the near term,” In DARPA/DOE High Efficient Thermoelectric Workshop, San Diego, CA. (2002).
1.14 T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. Laforge, “Quantum dot superlattice thermoelectric materials,” Science 297, 2229-2232 (2002).
1.15 H℃hbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451, 163 (2008).
1.16 L. D. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit,” Phys. Rev. B 47, 12727 (1997).
2.1 D. L. Smith, “Thin-film deposition: principles and practice,” McGraw Hill, San Francisco (1995).
2.2 S. M. Gates, S. M. Greenlief, D. B. Beach, and P. A. Holbert, “Decomposition of silane on Si(111)-(7×7) and Si(100)-(2×1) surfaces below 500 °C,” J. Chen. Phys. 92, 3144 (1990).
2.3 G. Katsarosa, A. Rastelli, M. Stoffel, G. Isella, H. von Kanel, A.M. Bittner, J. Tersoff, U. Denker, O.G. Schmidt, G. Costantini, and K. Kern, “Investigating the lateral motion of SiGe islands by selective chemical etching,” Surf. Sci. 600, 2608–2613 (2006).
2.4 K. F. Dombrowski, I. D. Wolf, and B. Dietrich, “Stress measurements using ultraviolet micro-Raman spectroscopy,” Appl. Phys. Lett. 75, 2450-2452 (1999).
3.1 L. W. Martin, Y. -H. Chu, and R. Ramesh, “Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films,” Mat. Sci. Eng. R. 68, 89-133 (2010).
3.2 W. -H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. -J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958 (2003).
3.3 K. Eberl. M. O. Lipinski, Y. M. Manz, W. Winter, N. Y. Jin-Phillipp, and O. G. Schmidt, “Self-assembled quantum dots for optoelectronic devices on Si and GaAs,” Physica E 9, 164-174 (2001).
3.4 G. Katsarosa, A. Rastelli, M. Stoffel, G. Isella, H. von Kanel, A.M. Bittner, J. Tersoff, U. Denker, O.G. Schmidt, G. Costantini, and K. Kern, “Investigating the lateral motion of SiGe islands by selective chemical etching,” Surf. Sci. 600, 2608–2613 (2006).
3.5 U. Denker, A. Rastelli, M. Stoffel, J. Tersoff, G. Katsaros, G. Costantini, L. Kern, N. Y. Jin-Phillipp, D. E. Jesson, and O. G. Schmidt, “Lateral motion of SiGe islands driven by surface-mediated alloying,” Phys. Rev. Lett. 94, 216103 (2005).
3.6 S. W. Lee, H. T. Chang, J. K. Chang, and S. L. Chen, “Formation mechanism of self-assembled Ge/Si/Ge composite islands,” J. Electr℃hem. S℃. 158, H1113-H1116 (2011).
3.7 J. S. Reparaz, A. Bernardi, A. R. Goni, M. I. Alonso, and M. Garriga, “Composition dependence of the phonon strain shift coefficients of SiGe alloys revisited,” Appl. Phys. Lett. 92, 081909 (2008).
4.1 A. Alguno, N. Usami, T. Ujihara, K. Fujiwara, and G. Sazaki, “Enhanced quantum efficiency of solar cells with self-assembled Ge dots stacked in multilayer structure,” Appl. Phys. Lett. 83, 1258-1260 (2003).
4.2 K. Nakajima, N. Usami, K. Fujiwara, Y. Murakami, T. Ujihara, G. Sazaki, and T. Shishido, “Growth and properties of SiGe multicrystals with microscopic compositional distribution for high-efficiency solar cells,” Sol. Energ. Mat. Sol. C. 73, 305-320 (2002).
4.3 P. S. Chen, M. –J. Tsai, Y. H. Peng, C. W. Liu, and S.W. Lee, “Improvement of photoluminescence efficiency in stacked Ge/Si/Ge quantum dots with a thin Si spacer,” Phys. Stat. Sol. (b) 241, 3650-3655 (2004).
4.4 P. E. Hopkins, J. C. Duda, C. W. Petz, and J. A. Floro, “Controlling thermal conductance through quantum dot roughening at interfaces,” Phys. Rev. B 84, 035438 (2011).
4.5 J. S. Reparaz, A. Bernardi, A. R. Goni, M. I. Alonso, and M. Garriga, “Composition dependence of the phonon strain shift coefficients of SiGe alloys revisited,” Appl. Phys. Lett. 92, 081909 (2008).
4.6 J. Singh, “Electronic and optoelectronic properties of semiconductor structure,” Cambridge, 181-263 (2003).
4.7 D. Li, Y. Wu, R. Fan, P. Yang, and A. Majudar, "Thermal conductivity of individual Si/SiGe superlattice nanowires," Appl. Phys. Lett. 83, 3186 (2003).
4.8 G. Katsarosa, A. Rastelli, M. Stoffel, G. Isella, H. von Kanel, A.M. Bittner, J. Tersoff, U. Denker, O.G. Schmidt, G. Costantini, and K. Kern, “Investigating the lateral motion of SiGe islands by selective chemical etching,” Surf. Sci. 600, 2608–2613 (2006).