跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳致平
Chih-ping Wu
論文名稱: LTE下行資源分配與PSO演算法
PSO-based resource allocation in downlink LTE networks
指導教授: 賀嘉律
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系在職專班
Executive Master of Communication Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 41
中文關鍵詞: 下行資源分配PSO演算法
外文關鍵詞: resource allocation, PSO
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在LTE系統中,每個子載波(Sub-carrier)會因使用者所處的環境不同,產生通道衰減(Fading),因此為了使無限資源達到最有效的利用,必須將每個子載波分配給適當的用戶,尋找一組最佳的子載波分配方案,降低所需的發射功率。
    本論文針對LTE系統中下行的資源分配,來進行討論,運用PSO演算法收斂速度快,搜索範圍大且實現簡單的特點,來減少計算的複雜度,同時為了解決PSO演算法易提早收斂,陷入局部最佳解的缺點,將PSO演算法結合基因演算法中交配及突變的策略,將PSO演算法的效能進一步的提升。


    In this thesis, the problem of resource allocation in downlink long term evolution (LTE) networks is investigated. To increase the spectral and power efficiency, we propose a subcarrier allocation scheme based on particle swarm optimization (PSO) algorithm. PSO can be easily implemented in discrete optimization problem and fast converge to an optimal solution, but the solution may be just a local optimum. In order to avoid trapping at local optima, the strategies of crossover and mutation are used in the proposed method. Simulation results show that the proposed algorithm can efficiently reduce the total transmission power.

    中文摘要 英文摘要 誌謝 目錄 圖目錄 表目錄 第1章 緒論 1 1-1 研究動機 1 1-2 研究目的 1 1-3 論文架構 2 本論文的各章內容如下: 3 第2章 LTE下行傳輸方式簡介 4 2-1 無線通道模型 4 2-1-1 多重路徑效應與同調頻寬 4 2-1-2 都普勒偏移(Doppler Shift)與同調時間 5 2-2 OFDM的優勢: 6 2-3 OFDM的基本原理: 8 2-4 OFDMA的優點 11 第3章 資源分配機制介紹 13 3-1 自適應調變和編碼技術(AMC) 13 3-2 OFDMA系統子載波分配模型 14 3-3 粒子群算法的基本原理 15 3-4 粒子群優化算法解決旅行商問題 18 3-4-1 交換子與交換序 19 3-4-2 求解TSP的PSO算法 20 3-5 改良式粒子群演算法 22 3-5-1 改良式粒子群演算法 22 3-5-2 運用改良式PSO演算法的子載波資源分配流程 29 第4章 模擬結果之比較與分析 31 4-1 模擬方式 31 4-2 交配策略與突變策略之影響 34 4-3 實驗結果分析 37 第5章 結論與未來展望 39 5-2 結論 39 參考文獻 40

    [1] J. Kennedy and R. Eberhart, “Particle swarm optimization,” In Proc. of the IEEE International Conference on Neural Networks, 1995, pp. 1942–1948.
    [2] Y.W. Cheong, R.S. Cheng, K.B. Lataief, and R.D. Murch, “ Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Selected Areas Comm., vol.17, pp. 1747–175, Oct.1999.
    [3] G. Zhang, “ Subcarrier and bit allocation for real-time services in multiuser OFDM systems,” In Proc. IEEE International Conference on Communications (ICC’04), vol.5, pp. 2985–2989, Jun. 2004.
    [4] I. Ahmed, S. Sadeque and S. Pervin, “Margin adaptive resource allocation for multiuser OFDM systems by modified particle swarm optimization and differential evolution,” 21st International Conference on Electrical Communications and Computers, San Andres Cholula, 2011, pp. 277–231.
    [5] 畢曉君,曹巍巍, “基于粒子群算法的OFDMA系統自適應子載波分配問題,” 哈爾濱工程大學學報, 2010, vol. 08.
    [6] J. Kennedy and R. Eberhart, “A discrete binary version of the particle swarm algorithm,” In Proc. of the IEEE International Conference on System, Man and Cybernetics, Orlando, Florida, USA, 1997, vol. 5, pp. 4104–4108.
    [7] 黃嵐,王康平,周春光,龐巍,董龍江,彭利, ” 粒子群優化算法求解旅行商問題,”吉林大學學報, 2003, vol.4, pp.477-480.
    [8] H. Fan, “Discrete Particle Swarm Optimization for TSP based on Neighborhood, ”Journal of Computational Information Systems, vol. 6, no. 10, pp. 3407–3414, 2010.
    [9] L. Davis, “Job shop scheduling with genetic algorithms,” International conference on Genetic algorithms and Their Applications, Mahwah, NJ, Lawrence Eribaum Associate, pp. 136–140, 1985.
    [10] D.E. Goldberg and R.A. Lingle, “loci and traveling salesman problem,” International conference on Genetic algorithms and Their Applications, Mahwah, NJ, Lawrence Eribaum Associate, pp. 154–159, 1985.
    [11] 梁艷春,吳春國,時小虎,葛宏偉, 群智能優化算法理論與應用. 北京:科學出版社, 2009, pp. 9–103.

    QR CODE
    :::