跳到主要內容

簡易檢索 / 詳目顯示

研究生: 章展誥
Chan-Kao Chang
論文名稱: 兩微米巡天數星所取得的銀河系資訊
The Information of the Milky Way from 2MASS Star Counts
指導教授: 高仲明
Chung-Ming Ko
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
畢業學年度: 100
語文別: 英文
論文頁數: 94
中文關鍵詞: 兩微米巡天數星銀河系光度函數銀河系結構
外文關鍵詞: 2MASS, Star Counts, Galactic Luminosity Function, Galactic Structure
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 兩微米近紅外巡天計劃的點源目錄(2MASS PSC) 提供了一個很好的機會以數星(star counts) 的方式來研究銀河系的結構及其成員星的光度函數(luminosity function)。我們建立了空間解析度約為1度的全天Ks波段的差異數星(differential star counts, DSC), 其對數型式呈現了一個漂亮的線性範圍可以被一個單4次函數(single power law) 的光度函數及一個三單元的銀河系模型(薄盤、厚盤及銀暈) 所擬合。我們發現銀河的模型並不會影響該線性區域的形狀, 因此我們搭配了一個常用的銀河系模型來量測Ks波段的差異數星以獲得全天的光度函數, 全天光度函數的4次函數指數(power law index) 約略均G分布, 跟銀河系座標沒有明顯關聯性, 期平均值為γ = 1.85 ± 0.035, 另外光度函數的上下限分別為Mb = −7.86 ± 0.60 Ks星等及Mf = 6.88 ± 0.66 Ks星等, 我們的結果強烈支持銀河系單一光度函數的假設。我們也發現大麥哲倫星雲(LMC) 與小麥哲倫星雲(SMC) 的光度函數跟銀河系相類似。
    藉由上面得到的光度函數, 我們接著重新測量銀河系三單元的結構參數, 為了避免盤面區域複雜的小結構(fine structure) 及消光(extinction), 我們只利用銀緯大於30度的天區, 擬合結果為: 太陽附近薄盤的星數密度為(local stellar density) n0 = 0.030 ± 0.002 stars/pc3, 其結構高度(scale-height)及結構長度(scale-length)分別為Hz1 = 360±10 pc及Hr1 = 3.7±1.0 kpc; 而厚盤對薄盤的比例(local thick-to-thin disk density ratio) 及其結構高度及結構長度分別為Hz2 = 1020±30 pc,Hr2 = 5.0±1.0 kpc 及f2 = 7±1%; 另外,銀暈的軸比(axis ratio), 半徑遞減指數(power law index) 及對薄盤的比例(local thickto-thin disk density ratio) 分別為κ = 0.55±0.15,p = 2.6±0.6 及fh = 0.20±0.10%。此外, 我們發現主要結構參數(n0,Hz1, f2 and Hz2) 間存在著簡併的現象(degeneracy), 這些參數中的任兩個都呈現反相關趨勢(anti-correlated), 因此2MASS 的資料可以同時被好幾組不同的參數組合所擬合, 這也可能是為何文獻上的結構參數會有許多不同值的原因。因為只分析了中高銀緯的天區, 所以我們的擬合對盤的結構長度並不靈敏。


    The point source catalog of the Two Micro All Sky Survey (2MASS PSC) provides a good opportunity to employ star counts on the investigation of the the Milky Way structure and its stellar luminosity function in a global aspect. We carry out the whole sky Ks differential star counts (DSC) with one degree spatial resolution. The logarithmic Ks DSC shows a nice linear part which can be well explained by a single power law luminosity function with a three components Galactic structure model (i.e., thin disk, thick disk and halo). It turns out that the Galactic structure does not affect the shape of the linear part of the logarithmic Ks DSC as much as the luminosity
    function. Hence we measure the luminosity functions of the entire Milky Way from the Ks DSC with a fiducial Galactic model. The power law indices of the whole sky Ks luminosity function are roughly isotropic (i.e., no obvious trend with the Galactic latitude and longitude). The mean values for the power law index, the bright and the faint ends of the luminosity function are γ = 1.85 ± 0.035, Mb = −7.86 ± 0.60 Ks mag and Mf = 6.88 ± 0.66 Ks mag, respectively. Our result strongly support the notion of a universal luminosity function in our Galaxy. We also find that the
    luminosity functions of the Large Magellanic Cloud and the Small Magellanic Cloud are similar to that of our Galaxy. With this luminosity function, we refine the Galactic structure parameters of three components. To avoid complication introduced by other fine structures and significant extinction near the Galactic plane, we only consider Galactic latitude |b| > 30◦ Ks DSC. Our best-fit local density of the thin disk is n0 = 0.030 ± 0.002 stars/pc3. The best-fit scale-height and length of the thin disk are Hz1 = 360 ± 10 pc and Hr1 = 3.7 ± 1.0 kpc, and those of the thick disk are Hz2 = 1020±30 pc and Hr2 = 5.0±1.0 kpc, the local thick-to-thin disk density ratio is f2 = 7±1%. The best-fit axis ratio, power law index and local density ratio of the oblate halo are κ = 0.55 ± 0.15, p = 2.6 ± 0.6 and fh = 0.20 ± 0.10%, respectively. Moreover, we find some degeneracy among the key parameters (e.g., n0,Hz1, f2 and Hz2). Any pair of these parameters are anti-correlated to each other. The 2MASS data can be well-fitted by several possible combinations of these parameters. This is probably the reason that there is a wide range of values for the structure parameters in literature similar to this study. Since only medium and high Galactic latitude data are analyzed, the fitting is insensitive to the scale-lengths of the disks.

    1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 2MASS Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 2MASS Point Source Catalog . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 The Performance . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.2 Online Service of the 2MASS Point Source Catalog . . . . . . 17 2.2 Sky Partitioning — the Hierarchical Triangular Mesh, HTM . . . . . 17 2.3 Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Features of the 2MASS Ks DSC . . . . . . . . . . . . . . . . . . . . . 20 2.4.1 Linear Part, Turning Point and Turnover . . . . . . . . . . . . 21 2.4.2 Pre-Linear Part . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.3 Bumps and Dips . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.4 The Uniformity . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 Milky Way Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1 Synthetic Ks Band Differential Star Counts . . . . . . . . . . . . . . 29 3.1.1 Density Profile . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1.2 Luminosity Function . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.3 Extinction Model . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 Features of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.1 Turning Point, Turnoff Point and Pre-Linear Part . . . . . . . 37 3.2.2 Linear Part and Its Slope . . . . . . . . . . . . . . . . . . . . 38 3.2.3 Self-similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.4 Bumps and Dips . . . . . . . . . . . . . . . . . . . . . . . . . 40 4 The Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1 Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1.1 Maximum Likelihood Method . . . . . . . . . . . . . . . . . . 44 4.1.2 Confidence Levels . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Analysis for the Luminosity Function . . . . . . . . . . . . . . . . . . 46 4.3 Analysis for the Galactic Structures . . . . . . . . . . . . . . . . . . . 49 5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.1 Luminosity Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.1.1 Luminosity Function of the Milky Way . . . . . . . . . . . . . 54 5.1.2 Luminosity Functions of the LMC and SMC . . . . . . . . . . 56 5.1.3 Summary for the Luminosity Function . . . . . . . . . . . . . 59 5.2 Galactic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2.1 Summary for the Galactic Structure . . . . . . . . . . . . . . . 65 6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.1 Alternative Analysis for Galactic Structure . . . . . . . . . . . . . . . 71 6.2 Overdensity Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3 Color Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    Ak, S., Bilir, S., Karaali, S., & Buser, R. 2007, Astronomische Nachrichten, 328, 169
    Alves, D.R. 2000, ApJ, 539, 732
    Armandroff, T. E. 1989, AJ, 97, 375
    Bahcall, J.N., & Soneira, R.M. 1980, ApJ, 238, 17
    Bahcall, J. N., & Soneira, R. M. 1980, ApJS, 44, 73
    Bahcall, J.N., Soneira, R.M., Morton, D.C., & Tritton, K.P. 1983, ApJ, 265, 370
    Bahcall, J.N. 1986, ARA&A, 24, 577
    Bevington, P.R., Robinson, K.A. 1992, Data Reduction and Error Analysis for the Physical Sciences 2nd Ed., McGraw-Hill
    Bienayme, O., Robin, A.C., & Creze, M. 1987, A&A, 180, 94
    Bilir, S., Karaali, S., Ak, S., Yaz, E., & Hamzaoglu, E. 2006, New A, 12, 234
    Bilir, S., Karaali, S., & Gilmore, G. 2006, MNRAS, 366, 1295
    Bilir, S., Karaali, S., G¨uver, T., Karata¸s, Y., & Ak, S. G. 2006, Astronomische Nachrichten, 327, 72
    Bilir, S., Cabrera-Lavers, A., Karaali, S., Ak, S., Yaz, E., & Lopez-Corredoira, M. 2008, PASA, 25, 69
    Blumenthal, G. R., Faber, S. M., Primack, J. R., & Rees, M. J. 1984, Nature, 311, 517
    Bok, B. J. 1937, Chicago: University of Chicago Press, 1937,
    Buser, R., Rong, J., & Karaali, S. 1998, A&A, 331, 934
    Buser, R., Rong, J., & Karaali, S. 1999, A&A, 348, 98
    Cabrera-Lavers, A., Garz´on, F., & Hammersley, P. L. 2005, A&A, 433, 173
    Cabrera-Lavers, A., Bilir, S., Ak, S., Yaz, E., & L´opez-Corredoira, M. 2007, A&A, 464, 565
    Cabrera-Lavers, A., Gonzalez-Fernandez, C., Garzon, F., Hammersley, P. L., & Lopez-Corredoira, M. 2008, A&A, 491, 781
    Chang, C.-K., Ko, C.-M., & Peng, T.-H. 2010, ApJ, 724, 182
    Chang, C.-K., Ko, C.-M., & Peng, T.-H. 2011, arXiv:1107.3884
    Carollo, D., et al. 2008, Nature, 451, 216
    Chen, B., Figueras, F., Torra, J., Jordi, C., Luri, X., & Galadi-Enriquez, D. 1999, A&A, 352, 459
    Chen, B., et al. (the SDSS collaboration) 2001, ApJ, 553, 184
    Cutri, R.M., et al. 2003, The IRSA 2MASS All-Sky Point
    Source Catalog, NASA/IPAC Infrared Science Archive.
    http://irsa.ipac.caltech.edu/applications/Gator/
    del Rio, G., & Fenkart, R. 1987, A&AS, 68, 397
    Du, C., et al. 2003, A&A, 407, 541
    Du, C., Ma, J., Wu, Z., & Zhou, X. 2006, MNRAS, 372, 1304
    Eaton, N., Adams, D.J., & Giles, A.B. 1984, MNRAS, 208, 241
    Eggen, O. J., Lynden-Bell, D., & Sandage, A. R. 1962, ApJ, 136, 748
    Fenkart, R., & Karaali, S. 1987, A&AS, 69, 33
    Gilmore, G., & Reid, N. 1983, MNRAS, 202, 1025
    Gilmore, G. 1984, MNRAS, 207, 223
    Gilmore, G., & Wyse, R. F. G. 1985, AJ, 90, 2015
    Girardi, L., Groenewegen, M.A.T., Hatziminaoglou, E., & da Costa, L. 2005, A&A, 436, 895
    Groenewegen, M.A.T., et al. 2002, A&A, 392, 741
    Hammersley, P.L., Garzon, F., Mahoney, T.J., L´opez-Corredoira, M., & Torres, M.A.P. 2000, MNRAS, 317, L45
    Herschel, W. 1785, Royal Society of London Philosophical Transactions Series I, 75, 213
    Hess, R. 1924, Probleme der Astronomie, Festschrift fur Hugo v. Seeliger, Springer, Berlin, p. 265
    Hilditch, R.W., Howarth, I.D., & Harries, T.J. 2005, MNRAS, 357, 304
    Ishihara, D., et al. 2010, A&A, 514, A1
    Ivezic, Z., et al. 2008, ApJ, 684, 287
    Juric, M., et al. 2008, ApJ, 673, 864
    Kaiser, N., et al. 2002, Proc. SPIE, 4836, 154
    Kapteyn, J. C. 1922, ApJ, 55, 302
    Karaali, S., Bilir, S., & Hamzao˘glu, E. 2004, MNRAS, 355, 307
    Karaali, S., Bilir, S., Yaz, E., Hamzaoglu, E., & Buser, R. 2007, PASA, 24, 208
    Kuijken, K., & Gilmore, G. 1989, MNRAS, 239, 605
    Kunszt, P.Z., Szalay A.S., & Thakar A.R. 2001, Proc. of the MPA/ESO/MPE workshop (Springer-Verlag Berlin Heidelberg), pp. 631
    Larsen, J. A. 1996, Ph.D. Thesis
    Larsen, J. A., & Humphreys, R. M. 2003, AJ, 125, 1958
    Lee, Y.-W., Demarque, P., & Zinn, R. 1994, ApJ, 423, 248
    Lopez-Corredoira, M., Cabrera-Lavers, A., Garzon, F., & Hammersley, P.L. 2002, A&A, 394, 883
    Macri, L.M., Stanek, K.Z., Bersier, D., Greenhill, L.J., & Reid, M.J. 2006, ApJ, 652, 1133
    Majewski, S. R. 1993, ARA&A, 31, 575
    Majewski, S. R., Skrutskie, M. F., Weinberg, M. D., & Ostheimer, J. C. 2003, ApJ, 599, 1082
    Majewski, S. R., Ostheimer, J. C., Rocha-Pinto, H. J., Patterson, R. J., Guhathakurta, P., & Reitzel, D. 2004, ApJ, 615, 738
    Mamon, G.A., & Soneira, R.M. 1982, ApJ, 255, 181
    Marquez, A., & Schuster, W. J. 1994, A&AS, 108, 341
    Martin, N. F., Ibata, R. A., Bellazzini, M., Irwin, M. J., Lewis, G. F., & Dehnen, W. 2004, MNRAS, 348, 12
    Momany, Y., Zaggia, S., Gilmore, G., Piotto, G., Carraro, G., Bedin, L.R., & de Angeli, F. 2006, A&A, 451, 515
    Newberg, H. J., et al. 2002, ApJ, 569, 245
    Nishiyama, S., et al. 2005, ApJ, 621, L105
    Ojha, D. K., Bienayme, O., Robin, A. C., Creze, M., & Mohan, V. 1996, A&A, 311, 456
    Ojha, D. K., Bienayme, O., Mohan, V., & Robin, A. C. 1999, A&A, 351, 945
    Ojha, D.K. 2001, MNRAS, 322, 426
    Oort, J. H. 1938, Bull. Astron. Inst. Netherlands, 8, 233
    Phleps, S., Meisenheimer, K., Fuchs, B., & Wolf, C. 2000, A&A, 356, 108
    Phleps, S., Drepper, S., Meisenheimer, K., & Fuchs, B. 2005, A&A, 443, 929
    Perryman, M. A. C., et al. 2001, A&A, 369, 339
    Pritchet, C. 1983, AJ, 88, 1476
    Reid, M. J. 1993, ARA&A, 31, 345
    Reid, N., & Majewski, S. R. 1993, ApJ, 409, 635
    Reyle, C., Marshall, D.J., Robin, A.C., & Schultheis, M. 2009, A&A, 495, 819
    Robin, A. C., & & Creze, M. 1986, A&A, 157, 71
    Robin, A. C., Haywood, M., & Cr´ez´e, M., Ojha, D. K., & Bienayme, O. 1996, A&A, 305, 125
    Robin, A. C., Reyle, C., & Creze, M. 2000, A&A, 359, 103
    Robin, A. C., Reyle, C., Derriere, S., & Picaud, S. 2003, A&A, 409, 523
    Rocha-Pinto, H. J., Majewski, S. R., Skrutskie, M. F., & Crane, J. D. 2003, ApJ, 594, L115
    Rocha-Pinto, H. J., Majewski, S. R., Skrutskie, M. F., Crane, J. D., & Patterson, R. J. 2004, ApJ, 615, 732
    Schlegel, D.J., Finkbeiner, D.P., & Davis, M. 1998, ApJ, 500, 525
    Searle, L., & Zinn, R. 1978, ApJ, 225, 357
    Seares, F. H., van Rhijn, P. J., Joyner, M. C., & Richmond, M. L. 1925, ApJ, 62, 320
    Siegel, M. H., Majewski, S. R., Reid, I. N., & Thompson, I. B. 2002, ApJ, 578, 151
    Skrutskie M.F., et al. 2006, AJ, 131, 1163
    Springel, V., et al. 2005, Nature, 435, 629
    Tritton, K. P., & Morton, D. C. 1984, MNRAS, 209, 429
    van Loon, J. T., et al. 2003, MNRAS, 338, 857
    von Hippel, T., & Bothun, G. D. 1993, ApJ, 407, 115
    Wainscoat, R. J., Cohen, M., Volk, K., Walker, H. J., & Schwartz, D. E. 1992, ApJS, 83, 111
    Yamagata, T., & Yoshii, Y. 1992, AJ, 103, 117
    Yaz, E., & Karaali, S. 2010, New A, 15, 234
    York, D. G., et al. 2000, AJ, 120, 1579
    Yoshii, Y. 1982, PASJ, 34, 365
    Yoshii, Y., Ishida, K., & Stobie, R. S. 1987, AJ, 93, 323
    Yoshii, Y., & Saio, H. 1979, PASJ, 31, 339

    QR CODE
    :::