跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳民彥
Min-Yen Chen
論文名稱: 電滲泵的製作與性能測試
Performance and fabricabation analyses of the electroosmotic pump
指導教授: 吳俊諆
Jiunn-Chi Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 68
中文關鍵詞: 多孔介質電滲微泵焦耳熱效應
外文關鍵詞: Porous filter, Electroosmotic micropump, Joule heating effect
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文製作一微型電滲泵並測試其壓力和流率性能,此種無動件微泵將能做為微電子元件冷卻系統的輸送流體裝置。以燒結的二氧化矽粉末作為多孔介質的作為電滲泵整體尺寸為80×80×50 mm3。以白金線作為電極材料用來提供外加電壓,利用兩種工作流體(氯化鉀與硼酸鹽)以測試電滲泵的性能。兩種工作流體搭配不同濃度(C=0.1-4 mM)配合不同電壓(100-300 V)來測試電滲泵的性能。
    在相同工作流體與濃度下,電壓越高則流率與壓力越高;在相同工作流體與電壓下,濃度越高的溶液則流率越高、壓力越低。硼酸鹽溶液的表現比氯化鉀佳 ,因為前者的流率與施加電壓關係為線性,且可得到較高流率。目前製作的電滲泵最大壓力和最大流率分別為Qmax=19.7 ml/min、Pmax=124 kPa。
    在高濃度的工作流體高電壓下造成高電流,所以形成顯著的焦耳熱效應,導致電滲泵流體發熱。又以氯化鉀流體影響最為嚴重,其發熱情形會導致工作流體沸騰;硼酸鹽工作流體也有影響但是比較小。焦耳熱效應會使工作流體的溫度升高進而降低流體黏度 ,此點有助於提高電滲泵的流率。


    We have fabricated an electroosmotic (EO) micropump and test its pressure and flowrate performance. Such no-moving part pump can be used as the transporting flow device in the microelectronic cooler. The EO pump uses the sintered-silica as the porous media and the pump overall geometry is 80×80×50 mm3. The platinum electrode provides voltage and using the borate (N2B4O7) and KCl solutions as the working fluid. Various range of concentrations (C=0.1-4 mM) and applied voltages (100-300 V) are tested to measure the performance of the EO pump.
    Under the conditions of same working fluid and concentration the flowrate and pressure magnify as the applied voltage increases. For the same working fluid and apply voltage, those solutions with higher concentration result in higher flowrate and lower pressure. The borate solution performs better than the KCl solution for its relation between the flowrate and applied voltage is linear while the latter has abnormal fluctuation; moreover, its flowrate is higher. The present EO pump achieves a maximum flowrate and pressure of Qmax=19.7 ml/min and Pmax =124 kPa, respectively
    The operating condition of present EO pump has high concentration and voltage which generate high current and thus prompt significant Joule heating effect. The Joule heating effect actually heats the solution inside the EO pump and even result in boiling of the KCl solution in the chamber of EO pump. The flowrate of the EO pump is enhanced by the Joule heating effect since the solution viscosity is reduced.

    摘 要 II 英文摘要 III 目錄 IV 圖目錄 VI 表目錄 IX 符號說明 X 第一章 緒論 1 1.1 研究動機 1 1.2 電雙層 3 1.3 文獻回顧 5 1.4 研究目的 8 第二章 電滲泵理論介紹 10 2.1 電滲流作動原理 10 2.2 工作流體與管壁材料之間的效應 11 第三章 電滲泵製作 15 3.1 電滲泵設計 15 3.2 實驗設備 19 3.3 工作流體 19 3.4 實驗步驟 20 第四章 結果與討論 23 4.1 流率 23 4.2 焦耳熱效應 25 4.3 壓力 26 4.4 與其他學者數據比較 27 4.5 實驗現象 29 4.6 實驗再現性 29 4.7 最大流率與最大壓降 30 第五章 結論 32 5.1 結論 32 5.2 未來改進方向 33 參考文獻35

    Brask, A., “Principles of electroosmotic pumps,” Technical University of Denmark Master Thesis, February 26, (2003).
    Chen, L., Ma, J., Tan, F. and Guan, Y., “Generating high-pressure sub-microliter flow rate in packed microchannel by electroosmotic force: potential application in microfluidic systems,” Sensors and Actuators B 88 (2003) 260-265.
    Chen, L. Ma, J. and Guan, Y., “Study of an electroosmotic pump for liquid delivery and its application in capillary column liquid chromatography,” J. Chromatography A 1028 (2004) 219-226.
    Chen, C. H. and Santiago, J. G., “Electrokinetic flow instability in high concentration gradient microflows,” Proc. Int’l Mech. Eng. Cong. and Exp., New Orleans, LA, CD (2002) 33563.
    Chen, C. H. and Santiago, J. G.. “A planar electroosmotic micropump,” J. Microelectromechanical Systems, 11 (6) (2002) 672-683.
    Chen, L., Wang, H., Ma, J., Wang, C. and Guan, Y., “Fabrication and characterization of a multi-stage electroosmotic pump for liquid delivery,” Sensors and Actuators B 104 (2005) 117-123.
    Chen, G., Tallarek, U., Seidel-Morgenstern, A. and Zhang, Y., “Influence of moderate Joule heating on electroosmotic flow velocity, retention and efficiency in capillary electrochromatography,” J. Chromatography A 1044 (2004) 287-294.
    Jiang, L., Mikkelsen, J., Koo, J.-M., Huber, D., Yao, S., Zhang, L., Zhou, P., Maveety, J. G., Prasher, R., Kenny, T. W. and Goodson, K. E., “Closed-loop electroosmotic microchannel cooling system for VLSI circuits,” IEEE Transactions on components and packaging technologies, 25 (3) (2002) 347-355.
    Laser, D. J. and Santiago, J. G., “A review of micropumps,” J. Micromech. Microeng. 14 (2004) R35-R64.
    Mutlu, S., Yu, C., Selvaganapathy, P., Svec, F., Mastrangelo, C. H. and Frechet, J. M. J., “Micromachined porous polymer for bubble free electro-osmotic pimp,” IEEE MEMS 2002 Conference, 19-24.
    Miller, S. A. and Martin, C. R., “Controlling the rate and direction of electroosmotic flow in template-prepared carbon nanotube membranes,” J. Electroanalytical Chemistry 522 (2002) 66-69.
    Muthu, S., Svec F., Mastrangelo, C. H., Frechet, J. M. J. and Gianchandani, Y. B., “Enhanced electro-osmotic pumping with liquid bridge and field effect flow rectification, Micro Electro Mechanical Systems,” 17th IEEE MEMS Conference, (2004) 850-853.
    Reichmuth, D. S., Chirica, G. S. and Kirby, B. J., “Increasing the performance of high-pressure, high-efficiency electrokinetic micropumps using zwitterionic solute additives,” Sensors and Actuators B 92 (2003) 37-43.
    Singhal , V., Garimella, S. V. and Raman, A., “Microscale pumping technologies for microchannel cooling systems,” Applied Mechanics Reviews, 57 (3) (2004) 191-221.
    Tripp, J. A., Svec, F., Frechet, J. M.J., Zeng, S., Mikkelsen, J. C. and Santiago, J. G., “High-pressure electroosmotic pumps based on porous polymer monoliths,” Sensors and Actuators B 92 (2004) 66-73.
    Viklund, C. and Ponten, E., “Molded macroporous poly (glycidyl methacrylate- co-trimethylolpropane trimethacrylate) materials with fine controlled porous properties: preparation of monoliths using photoinitiated polymerization,” Chem. Mater. 9 (1997) 463.
    Yao, S., Huber, D., Mikkelsen, J. C. and Santiago, J. G.., “A large flowrate electroosmotic pump with micron pores,” ASME International Mechanical Engineering Congress and Exposition, 11-16 (2001) 1-7.
    Yao, S. and Santiago, J. G., “Porous glass electroosmotic pump: theory,” J. Colloid and Interface Science, 268 (2003) 133-142.
    Yao, S., Hertzog, D. E., Zeng, S., Mikkelsen, J. C. and Santiago, J. G., “Porous glass electroosmotic pumps: design and experiments,” J. Colloid and Interface Science, 268 (2003) 143-153.
    Zeng, S., Chen, C. H., Mikkelsen, J. C. and Santiago, J. G., “Fabrication and characterization of electroosmotic micropumps,” Sensors and Actuators B 79 (2001) 107-114.
    Zeng, S., Chen, C. H., Santiago, J. G., Chen, J. R., Zare, R. N., Tripp, J. A., Svec, F. and Frechet, J. M.J., “Electroosmotic flow pumps with polymer frits,” Sensors and Actuators B 82 (2002) 209-212.
    黃經孝,微管道電滲流物理特性之數值模擬,國立中央大學碩士論文,中壢市,2004。
    王介光,溫度不敏感性之電動力學行為於毛細管區域電泳,國立中央大學化工工程研究所碩士論文,中壢市,2004。

    QR CODE
    :::