| 研究生: |
林依欣 Yi-Xin Lin |
|---|---|
| 論文名稱: |
鈮酸鋰薄膜光電元件之製程開發與研究 Study and fabrication of thin-film lithium niobate photonic devices |
| 指導教授: |
陳彥宏
Yen-Hung Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 鈮酸鋰薄膜 、鈮酸鋰 、絕熱耦合器 、定向耦合器 、脊型波導 、量子系統 |
| 外文關鍵詞: | LNOI, Lithium niobate, Adiabatic coupler, Directional coupler, Ridge waveguide, Quantum system-on-chip |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗主要開發鈮酸鋰薄膜波導之不同製備方法,並分析及比較各方法之優缺點。本實驗將x-cut鈮酸鋰薄膜波導設計於單模條件下,並透過軟體R-soft之光束傳播法(Beam propagation method, BPM)模擬直波導、絕熱耦合器(Adiabatic coupler, AC)及晶片上的量子系統(Quantum system-on-chip, QSoC)之模態及光傳播情況。
模擬結果顯示,於絕熱耦合器(Adiabatic coupler)有效耦合長度為0.4mm,相比於傳統鈮酸鋰20mm-50mm之耦合長度大幅減小了98%; 並且於晶片尺寸5mm1mm0.5mm之QSoC得到25%:25%:25%:25%之分光比。
波導製備方法分為兩部分,共五種方法,第一部份(方法一、二、四)利用黃光微影、濕蝕刻及乾蝕刻技術於鈮酸鋰薄膜上蝕刻出脊型波導;第二部份(方法三)利用雙束聚焦離子系統(Dual beam-focused ion beam system, FIB),於鈮酸鋰薄膜上蝕刻出線寬0.8m,側壁角度82之脊型波導,並量測TE偏振光總插入損耗~15.77dB,耦合損耗估計為14.19dB,傳播損耗估計為0.35dB/mm;TM偏振光總插入損耗為20.58dB,傳播損耗估計為25.75dB/mm。
另一方面,在與耶拿大學合作下,利用IBEE(Ion-beam enhanced etching)聚焦離子數蝕刻法(方法五),成功量測到AC及QSoC模態分佈,其AC結構總損耗為22.19dB。
在未來工作上,由於此脊狀波導結構於鈮酸鋰薄膜上完成,有別於傳統的鈮酸鋰調制器,可將元件尺度縮小至微米等級,未來配合CMOS等級之電光驅動電壓,可以與矽光子學等相關技術進一步整合,作為重要的矽光子學中之主動調制元件並實現積體化元件。
In order to achieve the waveguiding on the thin-film lithium niobate (TFLN
) substrate, we developed five fabrication methods to compare the advantages and disadvantages in different aspects of these methods.
Our devices are designed under single-mode conditions of 1550-nm band, and we simulated the single mode conditions, the adiabatic couplers (AC) and the quantum system-on-chip (QSoC) structures based on thin-film lithium niobate (TFLN) substrates by using the Beam Propagation Method (BPM) in commercial software of R-soft packages.
We found the effective coupling length of adiabatic couplers (AC) is only 0.4 mm, which is very effective in comparison with standard lithium niobate (LN) ACs with 20-50 mm length, the TFLN-AC coupling length is greatly shortened by 98% in comparison with our previous studies of classical LN ACs. In addition, The QSoC structure size is only 5 mm x 1 mm x 0.5 mm with 25%:25%:25%:25% simulated output splitting ratio, which is also 50 times miniaturization in comparison with the reference of QSoC based on classical LN with 50 mm x 5 mm x 0.5 mm size.
Our devices are designed and fabricated on 0.5-mm-thick x-cut thin-film lithium niobate-on-insulator (LNOI) substrates with thin-film lithium niobate layer of 600 nm above an insulator layer a4700-nm-thick silicon dioxide, and we used five methods to form the ridge waveguides on the surface of TFLN, the etching method is divided into two sections. The first three method (Method 1, Method 2 and Method 4) is wet and dry etching with using photolithography, wet etching and dry etching techniques before the TFLN etching process, these ridge waveguides are etched by inductively coupled plasma-reactive ion etching (ICP-RIE) equipment. For the ICP-RIE etched waveguides, we didn’t observe the stable guiding modes from Method 1 and Method 2, it may due to the high coupling loss and possible the high propagation losses, which may from the uneven channel and rugged surfaces of etched ridge region. The method of the second type (Method 4) is dual beam-focused ion beam system (FIB) etching method. We successfully etched TFLN ridge waveguides with a linewidth of 800 nm and a sidewall angle of 82 degrees by FIB-etching. For chip #FIB9-B, the measured insertion loss is around 15.77 dB of TE-polarized modes, the calculated propagation loss is only 0.35 dB/mm of TE polarization state, and the measured insertion loss ~20.58 dB of TM-polarized modes, the calculated propagation loss is 25.75 dB/mm at TM polarization state.
On the other hand, under the Jena University cooperation project, we used the ion-beam enhanced etching (IBEE) method (Method 5) to etch the TFLN substrates. We successfully measured adiabatic coupler with ~ 22.19 dB insertion loss of TE-polarized modes within the broadband spectral coupling characteristics, and also successfully observed the QSoC mode fields with the power ratio of 10.1%, 32.4%, 50.7% ,and 6.8% for 4 outputs, respectively, which represents and proves the S-bend, Y-branch and directional couplers of QSoC configuration are all have functions.
In the term of future outlook, due to various excellent characteristics of TFLN, the TFLN devices size can be reduced to the hundreds of microns, instead of mm to cm level of classical lithium niobate devices, and according the mode size and excellent electro-optical properties of TFLN, we may imagine in the near future, though the CMOS-compatible electro-optic switching voltages and the standard semiconductor foundries comparable mass-production processes, the TFLN electro-optic modulator (TFLN-EOM) can be further fully integrated with silicon photonics of more variety related technologies, such as integrated photon-detector (PD), integrated laser diode (LD) or even more complex optical circuits, the TFLN EOM can play as key role of important active modulation components in silicon photonics and realize the fully integrated electro-optical circuits (IEOC) in the decade.
[1] Miller, Stewart E. "Integrated optics: An introduction." The Bell System Technical Journal 48.7, p. 2059-2069. (1969).
[2] Chen, Roger, et al. "Nanophotonic integrated circuits from nanoresonators grown on silicon." Nature communications 50, p. 4325. (2014).
[3] E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics” Bell. Syst. Tech. J., 48, p.2071 2102, (1969).
[4] Paspalakis, Emmanuel. "Adiabatic three-waveguide directional coupler." Optics communications 258.1, p.30-34. (2006).
[5] Salandrino, Alessandro, et al. "Analysis of a three-core adiabatic directional coupler." Optics Communications 282.23: 4524-4526. (2009).
[6] Shani, Yosi, et al. "Integrated optic adiabatic devices on silicon." IEEE Journal of quantum Electronics 27.3, p.556-566. (1991).
[7] Tamazin, Heba, et al. "Ultra-broadband compact adiabatic coupler in silicon-on-insulator for joint operation in the C-and O-bands." CLEO: Science and Innovations. Optical Society of America, (2018).
[8] H. Tamazin, E. El-Fiky, Y. Wang, Y. D’Mello, D. Patel, A. Kumar, and D. V. Plant, “Ultra-broadband compact adiabatic coupler in silicon-on-insulator for joint operation in the C- and O-bands,” in Conference on Lasers and Electro-Optics, (CLEO), STh4B.4 (2018)
[9] Mrejen, Michael, et al. "Adiabatic elimination-based coupling control in densely packed subwavelength waveguides." Nature communications 6.1, p.1-7 (2015).
[10] W. H. Zachariasen, Skr. Norske Vid-Ada., Oslo, Mat. Naturv, No.4, (1928).
[11] Ballman, Albert A. "Growth of piezoelectric and ferroelectric materials by the CzochraIski technique." Journal of the American Ceramic Society 48.2, p.112-113. (1965).
[12] Boes, Andreas, et al. "Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits." Laser & Photonics Reviews 12.4, p. 1700256. (2018).
[13] Mercante, Andrew J., et al. "110 GHz CMOS compatible thin film LiNbO3 modulator on silicon." Optics express 24.14, p.5590-15595. (2016).
[14] Volk, Martin F., et al. "Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing." Optics express 24.2, p.1386-1391. (2016).
[15] Poberaj, Gorazd, et al. "Lithium niobate on insulator (LNOI) for micro‐photonic devices." Laser & photonics reviews 6.4, p.488-503. (2012).
[16] D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer-Science), New York, (2005).
[17] L. Maleki and A. Matsko, Ferroelectric Crystals for Photonic Applications, Springer, (2009).
[18] Betts, R. A., and C. W. Pitt. "Growth of thin-film lithium niobate by molecular beam epitaxy." Electronics Letters 21.21, p. 960-962. (1985).
[19] Gitmans, F., Z. Sitar, and P. Günter. "Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy." Vacuum 46.8-10, p. 939-942. (1995).
[20] Rost, Timothy A., et al. "Deposition and analysis of lithium niobate and other lithium niobium oxides by rf magnetron sputtering." Journal of applied physics 72.9, p. 4336-4343. (1992).
[21] Levy, M., et al. "Fabrication of single-crystal lithium niobate films by crystal ion slicing." Applied Physics Letters 73.16, p. 2293-2295. (1998).
[22] Pastureaud, Thomas, et al. "High-frequency surface acoustic waves excited on thin-oriented LiNbO3 single-crystal layers transferred onto silicon." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 54.4, p.870-876. (2007).
[23] Rao, Ashutosh, et al. "Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon." Optics express 23.17, p. 22746-22752. (2015).
[24] Wang, Cheng, et al. "Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages." Nature 562.7725, p, 101-104. (2018).
[25] Chung, H. P., et al. "Adiabatic light transfer in titanium diffused lithium niobate waveguides." Optics express 23.24, p.30641-30650. (2015).
[26] 黃俊育. "主動式多通道窄頻寬通 Ti: PPLN 波導濾波及模態轉換器之研究." 國立中央大學光電科學研究所學位論文,p. 1-59. (2006).
[27] Jin, H., et al. "On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits." Physical review letters 113.10, p.103601. (2014).
[28] 高峰, et al. "弯曲波导研究进展及其应用." (2017).
[29] E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics” Bell. Syst. Tech. J., 48, p.2071-2102. (1969).
[30] Yariv, Amnon, and Pochi Yeh. Optical waves in crystals. Vol. 5. New York: Wiley, 1984.
[31] Vitanov, Nikolay V., et al. "Laser-induced population transfer by adiabatic passage techniques." Annual review of physical chemistry 52.1, p.763-809. (2001).
[32] Paspalakis, Emmanuel. "Adiabatic three-waveguide directional coupler." Optics communications 258.1, p.30-34. (2006).
[33] Levy, M., et al. "Fabrication of single-crystal lithium niobate films by crystal ion slicing." Applied Physics Letters 73.16, p. 2293-2295. (1998).
[34] Poberaj, Gorazd, et al. "Lithium niobate on insulator (LNOI) for micro‐photonic devices." Laser & photonics reviews 6.4, p.488-503. (2012).
[35] Feit, M. D., and J. A. Fleck. "Light propagation in graded-index optical fibers." Applied optics 17.24, 3990-3998 (1978).
[36] Yevick, David, and Björn Hermansson. "New formulations of the matrix beam propagation method: Application to rib waveguides." IEEE Journal of Quantum Electronics 25.2, 221-229. (1989).
[37] Green, William MJ, et al. "Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator." Optics express 15.25, p.17106-17113. (2007).
[38] Sasaki, Hiroshi, and Iain Anderson. "Theoretical and experimental studies on active Y-junctions in optical waveguides." IEEE Journal of Quantum Electronics 14.11, p. 883-892. (1978).
[39] Anderson, Iain. "Transmission performance of Y-junctions in planar dielectric waveguide." IEE Journal on Microwaves, Optics and Acoustics 2.1, p.7. (1978).
[40] Burns, W. K., et al. "Ti diffusion in Ti: LiNbO3 planar and channel optical waveguides." Journal of Applied Physics 50.10, p. 6175-6182. (1979).
[41] De Micheli, Marc, et al. "Fabrication and characterization of titanium indiffused proton exchanged (TIPE) waveguides in lithium niobate." Optics Communications 42.2, p.101-103. (1982).
[42] Chang, Lin, et al. "Thin film wavelength converters for photonic integrated circuits." Optica 3.5, p.31-535. (2016).
[43] Li, Shuang, et al. "Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe." Optics express23.19, p. 24212-24219. (2015).
[44] Kurimura, Sunao, et al. "Quasi-phase-matched adhered ridge waveguide in LiNbO 3." Applied physics letters 89.19, p.191123. (2006).
[45] Schmidt, R. V., and I. P. Kaminow. "Metal‐diffused optical waveguides in LiNbO3." Applied Physics Letters 25.8, p. 458-460. (1974).
[46] Jackel, Janet L., C. E. Rice, and J. J. Veselka. "Proton exchange for high‐index waveguides in LiNbO3." Applied Physics Letters 41.7,p.607-608. (1982).
[47] Yamamoto, Kazuhisa, Kiminori Mizuuchi, and Tetsuo Taniuchi. "Low-loss channel waveguides in MgO: LiNbO3 and LiTaO3 by pyrophosphoric acid proton exchange." Japanese journal of applied physics 31.4R, p. 1059. (1992).
[48] Yamamoto, K., and T. Taniuchi. "Characteristics of pyrophosphoric acid proton‐exchanged waveguides in LiNbO3." Journal of applied physics 70.11, p. 6663-6668. (1991).
[49] Wang, Cheng, et al. "Nanophotonic lithium niobate electro-optic modulators." Optics express 26.2: 1547-1555. (2018).
[50] Young, R. J., J. R. A. Cleaver, and H. Ahmed. "Characteristics of gas‐assisted focused ion beam etching." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 11.2, p. 234-241. (1993).
[51] Krasnokutska, Inna, Jean-Luc J. Tambasco, and Alberto Peruzzo. "Nanostructuring of LNOI for efficient edge coupling." arXiv preprint arXiv:1902.07394 (2019).
[52] Zhang, Mian, et al. "Monolithic ultra-high-Q lithium niobate microring resonator." Optica 4.12, p.1536-1537. (2017).
[53] Siew, Shawn Y., et al. "Rib microring resonators in lithium niobate on insulator." IEEE Photonics Technology Letters 28.5, p.573-576. (2015).
[54] Jian, Jian, et al. "High Quality Factor Dry-etched Lithium Niobate Ridge Waveguide Micro-ring Resonators." Asia Communications and Photonics Conference. Optical Society of America, (2017).
[55] Albert, Jacques, and Gar Lam Yip. "Insertion loss reduction between single-mode fibers and diffused channel waveguides." Applied optics 27.23, p. 4837-4843. (1988).
[56] Chen, Zhihua, et al. "Grating coupler on lithium niobate thin film waveguide with a metal bottom reflector." Optical Materials Express 7.11, p.4010-4017. (2017).
[57] Krasnokutska, Inna, et al. "Ultra-low loss photonic circuits in lithium niobate on insulator." Optics express 26.2, p. 897-904. (2018).
[58] Baghban, Mohammad Amin, et al. "Bragg gratings in thin-film LiNbO3 waveguides." Optics Express 25.26, p. 32323-32332. (2017).
[59] Ulliac, Gwenn, et al. "Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application." Optical Materials 53 (2016).
[60] Tabor, David. The hardness of metals. Oxford university press, (2000).
[61] Jun, Deng, et al. "Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 30.1, p. 011208. (2012).
[62] http://www.samco.co.jp/
[63] 楊舜傑. "聚焦離子束於石英玻璃奈米結構加工之探討." 國立中山大學機械與機電工程學系碩士學位論文. (2008).
[64] Geiss, Reinhard, et al. "Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation." Optics letters 40.12, p. 2715-2718. (2015).
[65] Schrempel, F., et al. "Ion beam enhanced etching of LiNbO3." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 250.1-2, 164-168. (2006).
[66] Albert, Jacques, and Gar Lam Yip. "Insertion loss reduction between single-mode fibers and diffused channel waveguides." Applied optics 27.23, 4837-4843. (1988).
[67] Son, Gyeongho, et al. "High-efficiency broadband light coupling between optical fibers and photonic integrated circuits." Nanophotonics 7.12, p. 1845-1864. (2018).
[68] Taillaert, Dirk, et al. "Grating couplers for coupling between optical fibers and nanophotonic waveguides." Japanese Journal of Applied Physics 45.8R, 6071. (2006).
[69] Mahmoud, Mohamed, Siddhartha Ghosh, and Gianluca Piazza. "Lithium niobate on insulator (LNOI) grating couplers." CLEO: Science and Innovations. Optical Society of America, (2015).