跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳長樂
Tran, Nhat Van Nhu
論文名稱: Large Language Model-Guided Discovery of Molecular Mechanisms Associated with Insulin Resistance in Gonadotropin-Induced Ovarian Somatic Cells
指導教授: 吳立青
Li-Ching Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生醫科學與工程學系
Department of Biomedical Sciences and Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 120
中文關鍵詞: One keyword per line人工智慧視覺標記提示LLM 驅動路徑PCOS
外文關鍵詞: One keyword per line, AI, Vision-tokenized prompt, LLMs-driven pathway, PCOS
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多囊性卵巢症候群 (PCOS) 是一種常見的內分泌疾病,嚴重影響女性生殖健康,表現為月經不規則、卵巢功能障礙、排卵稀少和生長激素 (GH) 水平降低。生長激素是女性生殖系統中最重要的荷爾蒙之一,有助於卵巢應對壓力。在育齡期,卵巢體細胞,例如顆粒細胞 (GC) 和卵丘細胞 (CC),長期受到氧化應激,可能因其在激素失調和卵泡發生中的作用而有助於理解激素代謝紊亂的複雜性。透過利用 Vision-Language Tokenizer 下的人工智慧驅動的通路推斷,結合轉錄組分析和 STRING 等精選資料庫得出的差異表達基因 (DEG),該通路發現有望揭示 PCOS 患者和非 PCOS 患者中促性腺激素誘導 CC 和 GC 細胞表達的生物學機制。
    目的:本研究提出了一種綜合系統生物學方法,該方法整合了轉錄組分析、蛋白質-蛋白質相互作用網絡以及基於視覺方法的大型語言模型 (LLM) 的指導,以研究促性腺激素在多囊卵巢綜合徵 (PCOS) 和非多囊卵巢綜合徵 (PCOS) 患者中引發的失調。
    結果:透過分析來自合作社 (CC) 的兩個合併的 GEO 微陣列資料集,鑑定出 584 個高置信度的失調 DEG,生物醫學領域 PubMedBERT 的「基因-疾病」和「基因-基因」聚類模型優先考慮了其中 86 個基因。隨後,在 LLM 輔助下,輸入 18 個聚類候選蛋白和 GO 術語,揭示了 mRNA 加工和 NAD⁺ 生物合成中存在重大干擾。具體而言,NMNAT3、CPSF4 和 NUP210 的下調表明,在氧化壓力背景下,與伴侶蛋白 CCT4 介導的上調相關的線粒體 NAD⁺ 生物合成可能減少,從而導致 β 細胞基因表達受抑制的轉錄機制可能存在缺陷。
    方法:本研究利用視覺高級法學碩士 (LLM),包括 Scholar GPT-4o、Claude Sonnet-4、Gemini 2.5 Flash 和 GitHub Copilot,構建了一條推斷通路,並透過視覺語言任務提示,將觀察到的轉錄組變化與潛在的代謝功能障礙聯繫起來。 PubMedBERT 篩選顯示,基因間語意相似度得分較高,STRING 資料庫也支持了蛋白質-蛋白質交互作用。在 LLM 提示之前檢索 GO 術語和通路,為重新組裝 PCOS 患者的分子通路建立了一個強有力的框架,並強調了發炎信號傳導。


    Polycystic Ovary Syndrome (PCOS) is a common endocrine disorder that significantly affects female reproductive health, manifesting as menstrual irregularities, ovarian dysfunction, oligo-anovulation and lowered growth hormone (GH) level. GH, one of the most significant hormones in female reproductive system, helps the ovaries respond to distress. During reproductive ages, the prolonged induced oxidative stress ovarian somatic cells, such as Granulosa cells (GCs) and Cumulus cells (CCs), may provide insights into the complexities of hormonally metabolic disorders, due to their role in hormonal dysregulation and folliculogenesis. By utilizing AI-driven pathway inferences under Vision-Language Tokenizer with DEGs from transcriptomic analysis and curated databases like STRING, the pathway discovery can potentially comprehend biologically plausible mechanisms related to gonadotropin induction on CCs and GCs between PCOS and non-PCOS patients.
    Aim: This study presents a comprehensive systems biological approach that integrates results of transcriptomic analysis, protein-protein interaction networks, and the vision-approached large language models (LLMs) guidance to investigate the dysregulations triggered by gonadotropins in both PCOS and non-PCOS patients.
    Results: Analysis of two merged GEO microarray datasets from CCs identified 584 high-confidence dysregulated DEGs that biomedical-domain PubMedBERT clustering Genes-Diseases and Gene-Gene prioritizes 86 genes. Subsequently, LLMs-assisted input with 18 clustered candidate proteins and GO terms revealed major disturbances in mRNA processing and NAD⁺ biosynthesis. Particularly, downregulation of NMNAT3, CPSF4 and NUP210 points to putative deficiencies in the transcriptional machinery involved in suppressed β-cell gene expressions under a potential depletion of mitochondrial NAD⁺ biosynthesis related to chaperonin CCT4-mediated upregulation in the context of oxidative stress.
    Methodology: The study utilizes the vision-advanced LLMs, including Scholar GPT-4o, Claude Sonnet-4, Gemini 2.5 Flash, and GitHub Copilot, to construct an inferred pathway prompting with vision-language tasks that connects the observed transcriptomic changes to underlying metabolic dysfunctions. PubMedBERT filtering show the high semantic similarity score across the genes along with STRING database, reinforcing the protein-protein interactions. The retrievals of GO terms and pathways prior to LLMs prompting establish a strong framework for reassembling the molecular pathways in PCOS patients, emphasizing inflammatory signaling.

    摘要 i ENGLISH ABSTRACT iii ACKNOWLEDGEMENTS iii TABLE OF CONTENTS iv LIST OF FIGURES vi LIST OF TABLES vii LIST OF ABBREVIATIONS viii CHAPTER I INTRODUCTION 1 1-1 Synopsis of Polycystic Ovary Syndrome from Molecular to Cellular Level 1 1-1-1 Polycystic ovary syndrome—an hormonal-metabolic disorder 1 1-1-2 The relationship between ovary morphology and GnRH in human gonads 2 1-2 The LLMs Promptings in PCOS Biological Pathway Inference 5 1-2-1 An integrated bioinformatics analysis approach to PCOS research 5 1-2-2 The application of vision-proposed LLMs in biological pathway inferences 7 CHAPTER II METHODOLOGY 9 2-1 Data Collection and Processing 9 2-1-1 Transcriptome analysis 9 2-1-2 Identification of gene candidacy 10 2-2 LLM-based Gene Prioritization and Clustering 11 2-2-1 Gene-disease prioritization via LLM promptings 11 2-2-2 Gene-gene clustering by semantic coherence 12 2-3 Functional Annotation and Pathway Integration 14 2-3-1 Protein-protein interaction network construction and expansion 14 2-3-2 Pathway evaluation and biological relevance filtering 15 2-4 Multimodal LLM-assisted Mechanistic Pathway Inference 15 2-4-1 Large-language model tokenization strategy and biological prompt framing 15 2-4-2 Multimodal LLM-assisted mechanistic pathway inference 17 CHAPTER III RESULT 20 3-1 Transcriptomic Analysis 20 3-1-1 Principal component analysis and normalization outcomes 20 3-1-2 Differential expression in ovarian cumulus cells 20 3-1-3 Consensus DEG analysis in ovarian cumulus cells 33 3-2 Disease-Relevant Gene Filtering and Semantic Clustering 33 3-2-1 Gene-disease semantic prioritization 33 3-2-2 Gene-gene semantic clustering 36 3-3 Functional and Interaction-Based Refinement of DEGs 39 3-3-1 Functional annotation and pathway integration 39 3-3-2 Network expansion and biological relevance filtering 42 3-4 LLM-assisted Mechanistic Pathway Inferences 49 CHAPTER IV DISCUSSION 59 4-1 From DEGs to Dysregulated Proteins in Response to Acute Inflammation 59 4-2 LLMs applications in the Biomedical Missions 63 CHAPTER V CONCLUSION 65 BIBLIOGRAPHY 66 APPENDIX A 71 APPENDIX B 92

    1. Eriksson, G., et al., Single-cell profiling of the human endometrium in polycystic ovary syndrome. Nat Med, 2025.
    2. Adam, L.N. and L.N. Adam, Comprehensive overview of polycystic ovary syndrome: Pathophysiology, clinical features, and emerging therapeutic approaches. Obesity Medicine, 2025. 55.
    3. Dilliyappan, S., et al., Polycystic ovary syndrome: Recent research and therapeutic advancements. Life Sci, 2024. 359: p. 123221.
    4. Wang, K., Y. Li, and Y. Chen, Androgen excess: a hallmark of polycystic ovary syndrome. Front Endocrinol (Lausanne), 2023. 14: p. 1273542.
    5. Singh, S., et al., Polycystic Ovary Syndrome: Etiology, Current Management, and Future Therapeutics. J Clin Med, 2023. 12(4).
    6. Zhou, J., et al., Bioinformatics analysis of the molecular mechanism of obesity in polycystic ovary syndrome. Aging, 2021. 13(9): p. 9.
    7. Bongrani, A., et al., Ovarian Expression of Adipokines in Polycystic Ovary Syndrome: A Role for Chemerin, Omentin, and Apelin in Follicular Growth Arrest and Ovulatory Dysfunction? Int J Mol Sci, 2019. 20(15).
    8. Tsai, Y.R., Y.N. Liao, and H.Y. Kang, Current Advances in Cellular Approaches for Pathophysiology and Treatment of Polycystic Ovary Syndrome. Cells, 2023. 12(17).
    9. D'Angelo, M.A. and M.W. Hetzer, Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol, 2008. 18(10): p. 456-66.
    10. Sreerangaraja Urs, D.B., et al., Mitochondrial Function in Modulating Human Granulosa Cell Steroidogenesis and Female Fertility. Int J Mol Sci, 2020. 21(10).
    11. Morscher, R.J., et al., Mitochondrial translation requires folate-dependent tRNA methylation. Nature, 2018. 554(7690): p. 128-132.
    12. Wang, Y., et al., NAD+ deficiency and mitochondrial dysfunction in granulosa cells of women with polycystic ovary syndromedouble dagger. Biol Reprod, 2021. 105(2): p. 371-380.
    13. Chen, C., et al., NAD(+) Metabolism and Immune Regulation: New Approaches to Inflammatory Bowel Disease Therapies. Antioxidants (Basel), 2023. 12(6).
    14. Garten, A., et al., Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat Rev Endocrinol, 2015. 11(9): p. 535-46.
    15. Garlanda, C., et al., Decoys and Regulatory "Receptors" of the IL-1/Toll-Like Receptor Superfamily. Front Immunol, 2013. 4: p. 180.
    16. Supino, D., et al., Negative Regulation of the IL-1 System by IL-1R2 and IL-1R8: Relevance in Pathophysiology and Disease. Front Immunol, 2022. 13: p. 804641.
    17. Kim, D.H. and W.W. Lee, IL-1 Receptor Dynamics in Immune Cells: Orchestrating Immune Precision and Balance. Immune Netw, 2024. 24(3): p. e21.
    18. Zhang, Y., et al., Negative regulator IL-1 receptor 2 (IL-1R2) and its roles in immune regulation of autoimmune diseases. Int Immunopharmacol, 2024. 136: p. 112400.
    19. Acar, B. and S. Kadanali, Diminished growth hormone responses to L-dopa in polycystic ovarian disease. Fertil Steril, 1993. 60(6): p. 984-7.
    20. Tapanainen, J., et al., Regulation of human granulosa-luteal cell progesterone production and proliferation by gonadotropins and growth factors. Fertil Steril, 1987. 48(4): p. 576-80.
    21. Spiliotis, B.E., Growth hormone insufficiency and its impact on ovarian function. Ann N Y Acad Sci, 2003. 997: p. 77-84.
    22. T. Takeuchi and T. Kawana, Effect of growth hormone suppression on the serum levels of ovarian and adrenal sex steroid hormones in normal women and in women with polycystic ovary syndrome. Gynecol. Endocrinol, 1997. 11: p. 8.
    23. Turathum, B., E.M. Gao, and R.C. Chian, The Function of Cumulus Cells in Oocyte Growth and Maturation and in Subsequent Ovulation and Fertilization. Cells, 2021. 10(9).
    24. Zgórecka, W., et al., Human ovarian follicular granulosa cells isolated during ART procedure reflect substantial changes in activation of hormonal signaling pathways, during long-term in vitro conditions. Medical Journal of Cell Biology, 2022. 10(4): p. 163-175.
    25. Louis, A.C., Gonadotropins for ovarian stimulation mediate uterine fluid secretions through Cystic fibrosis transmembrane conductance regulator gene. LASU Journal of Medical Sciences, 2017. 2: p. 3.
    26. Murray, P.G., et al., Transcriptomics and machine learning predict diagnosis and severity of growth hormone deficiency. JCI Insight, 2018. 3(7).
    27. Ciresi, A., et al., Prevalence and clinical features of polycystic ovarian syndrome in adolescents with previous childhood growth hormone deficiency. J Pediatr Endocrinol Metab, 2016. 29(5): p. 571-8.
    28. Devarbhavi, P., et al., Identification of key pathways and genes in polycystic ovary syndrome via integrated bioinformatics analysis and prediction of small therapeutic molecules. Reprod Biol Endocrinol, 2021. 19(1): p. 31.
    29. Liu, Q., et al., Single-cell analysis of differences in transcriptomic profiles of oocytes and cumulus cells at GV, MI, MII stages from PCOS patients. Sci Rep, 2016. 6: p. 39638.
    30. Zhang, Y., et al., Transcriptome Landscape of Human Folliculogenesis Reveals Oocyte and Granulosa Cell Interactions. Mol Cell, 2018. 72(6): p. 1021-1034 e4.
    31. Li, J., et al., Molecular Features of Polycystic Ovary Syndrome Revealed by Transcriptome Analysis of Oocytes and Cumulus Cells. Front Cell Dev Biol, 2021. 9: p. 735684.
    32. Liu, L., et al., Integrated analysis of DNA methylation and transcriptome profiling of polycystic ovary syndrome. Mol Med Rep, 2020. 21(5): p. 2138-2150.
    33. Zeng, H., et al., Cancer gene identification through integrating causal prompting large language model with omics data-driven causal inference. Brief Bioinform, 2025. 26(2).
    34. Wu, Y., et al., Establishment and Analysis of an Artificial Neural Network Model for Early Detection of Polycystic Ovary Syndrome Using Machine Learning Techniques. J Inflamm Res, 2023. 16: p. 5667-5676.
    35. Rafi, A.H., A. Sultana, and A.A.A.C.M. Tariq, Artificial Intelligence for Early Diagnosis and Personalized Treatment in Gynecology. International Journal of Advanced Engineering Technologies and Innovations, 2024. 2(1): p. 20.
    36. Jaganathan, G. and S. Natesan, Blockchain and explainable-AI integrated system for Polycystic Ovary Syndrome (PCOS) detection. PeerJ Comput Sci, 2025. 11: p. e2702.
    37. Babbi, G., et al., eDGAR: a database of Disease-Gene Associations with annotated Relationships among genes, in Scienze della Vita, della Terra e dell’Ambiente. 2017, Università di Bologna: BMC Genomics. p. 9.
    38. Szklarczyk, D., et al., The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res, 2021. 49(D1): p. D605-D612.
    39. Azam, M., et al., A comprehensive evaluation of large language models in mining gene relations and pathway knowledge. Quant Biol, 2024. 12(4): p. 360-374.
    40. Zhou, X.Y., et al., Effects of Growth Hormone on Adult Human Gonads: Action on Reproduction and Sexual Function. Int J Endocrinol, 2023. 2023: p. 7492696.
    41. Habibe, J.J., et al., Glucose-mediated insulin secretion is improved in FHL2-deficient mice and elevated FHL2 expression in humans is associated with type 2 diabetes. Diabetologia, 2022. 65(10): p. 1721-1733.
    42. Dapas, M. and A. Dunaif, Deconstructing a Syndrome: Genomic Insights Into PCOS Causal Mechanisms and Classification. Endocr Rev, 2022. 43(6): p. 927-965.
    43. PERSSON, S., Polycystic ovary syndrome: Long-term health aspects, in Department of Women's and Children's Health, Reproductive Health. 2023, Uppsala University.
    44. Luo, Y., et al., BioMedGPT: An Open Multimodal Large Language Model for BioMedicine. IEEE J Biomed Health Inform, 2024. PP.
    45. WONG, C.-K., et al., Lomics: Generation of Pathways and Gene Sets using Large Language Models for Transcriptomic Analysis, in Department of Medicine, Li Ka Shing Faculty of Medicine. 2025, The University of Hong Kong.
    46. Zhu, J., et al., Enhancing Gene Set Overrepresentation Analysis with Large Language Models. preprint, 2024.
    47. Joachimiak, M.P., et al., Gene Set Summarization Using Large Language Models. preprint, 2025.
    48. Hu, M., et al., Evaluation of large language models for discovery of gene set function. Nat Methods, 2025. 22(1): p. 82-91.
    49. Newsham, I., et al., LARGE LANGUAGE MODELS FOR ZERO-SHOT INFERENCE OF CAUSAL STRUCTURES IN BIOLOGY. preprint, 2025.
    50. Jin, Q., et al., GeneGPT: augmenting large language models with domain tools for improved access to biomedical information. Bioinformatics, 2024. 40(2).
    51. Lian, H., et al., LBPE: Long-token-first Tokenization to Improve Large Language Models, in ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2025. p. 1-5.
    52. Gao, S., et al., Limitations of Transformers on Clinical Text Classification. IEEE J Biomed Health Inform, 2021. 25(9): p. 3596-3607.
    53. Toufiq, M., et al., Harnessing large language models (LLMs) for candidate gene prioritization and selection. J Transl Med, 2023. 21(1): p. 728.
    54. Khan, T., et al., Deep functional profiling of gene sets using Large Language Models: A blueprint for tailored, context-aware functional annotation. preprint, 2024.
    55. Wu, S., et al., TOWARDS SEMANTIC EQUIVALENCE OF TOKENIZA TION IN MULTIMODAL LLM, in the International Conference of Legal Regulators 2025. 2025, arXiv: Hong Kong.
    56. Huang, X., et al., Differences in the transcriptional profiles of human cumulus cells isolated from MI and MII oocytes of patients with polycystic ovary syndrome. Reproduction, 2013. 145(6): p. 597-608.
    57. Kenigsberg, S., et al., Gene expression microarray profiles of cumulus cells in lean and overweight-obese polycystic ovary syndrome patients. Mol Hum Reprod, 2009. 15(2): p. 89-103.
    58. (NCBI), N.C.f.B.I., GPL570: Affymetrix Human Genome U133 Plus 2.0 Array. 2005.
    59. Scientific, T.F., Transcriptome Analysis Console (TAC) Software v4.0 User Guide. 2015, Thermo Fisher Scientific: Waltham, MA.
    60. Irizarry, R.A., et al., Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Research, 2003. 31(4): p. e15.
    61. Gentleman, R., et al., Bioinformatics and Computational Biology Solutions Using R and Bioconductor. 2005: Springer.
    62. Wickham, H., et al., dplyr: A Grammar of Data Manipulation. 2023.
    63. Wickham, H. and J. Bryan, readxl: Read Excel Files. 2023.
    64. Wickham, H., ggplot2: Elegant Graphics for Data Analysis. 2016, Springer-Verlag New York.
    65. Yu, G., enrichplot: Visualization of Functional Enrichment Result. 2023.
    66. Wickham, H. and M. Girlich, tidyr: Tidy Messy Data. 2023.
    67. Wickham, H., stringr: Simple, Consistent Wrappers for Common String Operations. 2023.
    68. Hanbo, C., ggVennDiagram: A 'ggplot2' Implement of Venn Diagram. 2023.
    69. Chen, H., VennDiagram: Generate High-Resolution Venn and Euler Plots. 2023.
    70. Murrell, P., grid: The Grid Graphics Package. 2023.
    71. Csardi, G. and T. Nepusz, The igraph software package for complex network research. 2006, InterJournal, Complex Systems.
    72. Yu, H., futile.logger: A Logging Utility for R. 2023.
    73. Team, R.C., R: A Language and Environment for Statistical Computing. 2023, R Foundation for Statistical Computing.
    74. Gu, Y., et al., Domain-Specific Language Model Pretraining for Biomedical Natural Language Processing. 2020, arXiv.
    75. Blondel, V.D., et al., Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008. 2008.
    76. Chin, C.-H., et al., cytoHubba: identifying hub objects and subnetworks from complex interactome. BMC Systems Biology, 2014. 8(11).
    77. Huang, D.W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 2009. 4: p. 13.
    78. Huang, D.W., B.T. Sherman, and R.A. Lempicki, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 2009. 37(1): p. 1-13.
    79. Gene Ontology, C., The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res, 2021. 49(D1): p. D325-D334.
    80. Grantham, J., The Molecular Chaperone CCT/TRiC: An Essential Component of Proteostasis and a Potential Modulator of Protein Aggregation. Front Genet, 2020. 11: p. 172.
    81. Roberts, R.E., et al., Current understanding of hypothalamic amenorrhoea. Ther Adv Endocrinol Metab, 2020. 11: p. 2042018820945854.
    82. Knight, J.A., et al., Ovarian cysts and breast cancer: results from the Women's Contraceptive and Reproductive Experiences Study. Breast Cancer Res Treat, 2008. 109(1): p. 157-64.
    83. Yu, J., B. Qin, and Z. Lou, Ubiquitin and ubiquitin-like molecules in DNA double strand break repair. Cell Biosci, 2020. 10: p. 13.
    84. Reverchon, M., et al., Visfatin is expressed in human granulosa cells: regulation by metformin through AMPK/SIRT1 pathways and its role in steroidogenesis. Mol Hum Reprod, 2013. 19(5): p. 313-26.
    85. Revollo, J.R., A.A. Grimm, and S. Imai, The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem, 2004. 279(49): p. 50754-63.
    86. Walther;, T.C., et al., The Conserved Nup107-160 Complex Is Critical for Nuclear Pore Complex Assembly. Cell Press, 2003. 113: p. 9.
    87. Wang, X., et al., CPSF4 regulates circRNA formation and microRNA mediated gene silencing in hepatocellular carcinoma. Oncogene, 2021. 40(25): p. 4338-4351.
    88. Mertens-Walker, I., R.C. Baxter, and D.J. Marsh, Gonadotropin signalling in epithelial ovarian cancer. Cancer Lett, 2012. 324(2): p. 152-9.
    89. Zhang, Y., et al., Transcriptome Landscape of Human Folliculogenesis Reveals Oocyte and Granulosa Cell Interactions. Mol Cell, 2018. 72(6): p. 1021-1034 e4.
    90. Purcell, S.H., et al., Insulin-stimulated glucose uptake occurs in specialized cells within the cumulus oocyte complex. Endocrinology, 2012. 153(5): p. 2444-54.
    91. Brusco, N., et al., Intra-islet insulin synthesis defects are associated with endoplasmic reticulum stress and loss of beta cell identity in human diabetes. Diabetologia, 2023. 66(2): p. 354-366.
    92. Gougeon, A., Human ovarian follicular development: from activation of resting follicles to preovulatory maturation. Ann Endocrinol (Paris), 2010. 71(3): p. 132-43.
    93. Eppig, J.J., Oocyte control of ovarian follicular development and function in mammals. Reproduction, 2001. 122(6): p. 829-38.
    94. Gilchrist, R.B., M. Lane, and J.G. Thompson, Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update, 2008. 14(2): p. 159-77.
    95. Mao, G.K., et al., Gap junction -mediated cAMP movement between oocytes and somatic cells. Front Biosci (Elite Ed), 2013. 5(2): p. 755-67.
    96. Hillier, S.G., Gonadotropic control of ovarian follicular growth and development. Mol Cell Endocrinol, 2001. 179(1-2): p. 39-46.
    97. Simpson, E.R., et al., Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr Rev, 1994. 15(3): p. 342-55.
    98. Massoud, G., et al., Biomarkers Assessing the Role of Cumulus Cells on IVF Outcomes: A Systematic Review. J Assist Reprod Genet, 2024. 41(2): p. 253-275.
    99. Gardner, D.K., et al., Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril, 2000. 73(6): p. 1155-8.

    QR CODE
    :::