| 研究生: |
許擇倫 Tse-lun Hsu |
|---|---|
| 論文名稱: |
以無電鍍法製備純鈷金屬薄膜與空心奈米管之研究 Fabrications of pure Co thin film and hollow Co nanotubes by using the electroless Co deposition technique |
| 指導教授: |
鄭紹良
Shao-Liang Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 無電鍍鈷金屬 |
| 外文關鍵詞: | electroless pure Co thin film |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無電鍍鈷金屬薄膜由於擁有獨特的化學、磁性和機械性質,近來已經被廣泛的應用在各種工業上。然而,在現有的無電鍍鈷金屬薄膜中,常會發現含有其他的雜質如硼、磷等,這些雜質將會導致其可利用程度降低。因此,急需一個新的無電鍍製程來鍍製純鈷金屬薄膜。
在本研究中,我們利用聯胺作為還原劑,並以一個新的無電鍍製程在矽晶基材上沉積高純度鈷金屬薄膜。首先,將清洗過的(001)矽晶基材分別置入敏化劑(SnCl2/HCl)和活化劑(PdCl2/HCl)中進行前處理步驟。隨後將經過前處理的矽晶試片置入配置好的無電鍍鈷金屬鍍浴中,分別在30-45 ℃之間鍍製6-20分鐘。溶液中的鈷金屬離子藉由聯胺還原反應成鈷金屬,並在矽晶基材上形成一連續鈷金屬薄膜層。經由TEM和SAED分析,可得知所鍍製薄膜為HCP的純鈷金屬多晶相結構。除此之外,藉由EDS的分析所得到的結果,可進一步鑑定得原始鍍製的鈷金屬薄膜只含有純鈷金屬,並無其他雜質。另外,由XTEM的觀察結果可以發現,以無電鍍法鍍製的純鈷金屬薄膜其厚度在30-45 ℃之間時,會隨著時間呈線性增加,我們進一步求出不同溫度時的反應速率,藉由阿瑞尼士方程式我們可求得此純鈷薄膜成長活化能為0.34 eV。
在另一方面,在本研究中我們還嘗試利用以聯胺為還原劑的無電電鍍製程,並以非晶質氧化矽(a-SiOx)奈米線做為模板,配合移除中心模板後法,已可初步製備出大量高純度鈷金屬奈米空心管。實驗中有系統地以SEM、TEM和SAED分別分析觀察不同條件製備的試片的表面形狀、晶體結構和化學組成。
Electroless cobalt film has been widely used for many industrial applications due to its unique chemical, magnetic, and mechanical properties. However, a dramatic amount of impurities (e.g. B or P) were usually found to exist in the electroless Co layers. For microelectronic applications, these impurities would lead to reliability degradation. Therefore, the routes for electroless synthesis of pure Co metal layers are demanded.
In this study, a new and facile route for the electroless deposition of high-purity Co metal thin films on silicon substrate has been developed by using the hydrazine-modified electroless Co deposition processes. The as-cleaned (001)Si substrates were first presensitized and preactivated by treatment with the solutions of SnCl2/HCl and PdCl2/HCl, respectively. Subsequently, the activated Si substrates were immersed into the electroless Co plating baths at 30-45 ℃ for 6-20min. The Co ions were reduced to Co and then deposited onto the surface of the Si substrates to form a continuous Co layer. Form TEM and SAED analysis, diffraction rings corresponding to the pure HCP-Co phase were detected in the SAED pattern, indicating that the crystal structure of the electroless Co layer was polycrystalline. In addition, form EDS analysis, it is clearly shown that the as-deposited Co thin films were entirely composed of pure cobalt. From XTEM observation, the thickness of electroless pure Co thin films was found to increase linearly with plating time at the electroless plating temperatures of 30-45 ℃. Furthermore, by measuring the growth rate at different electroless plating temperatures, the activation energy for the linear growth of the pure Co thin films on blank-(001)Si was obtained from an Arrhenius plot to be about 0.34eV.
On the other hand, in this study, we proposed a new route for the large-scale synthesis of high-purity hollow Co nanotubes by employing the hydrazine-modified electroless Co deposition in conjunction with removable amorphous silicon oxide (a-SiOx) nanowire templates technique. The surface morphology, crystal structure, and chemical composition of the synthesized products were systematically characterized by SEM, TEM, and SAED.
[1] 張景學, 吳昌崙, “半導體製造技術”, 新文京出版社, 2003。
[2] 陳季南, 周釗生, 洪宗伯, “金屬矽化物薄膜的鑑定與分析”, 電子月刊, 第二卷, 第七期, 73-78。
[3] E. G. Colgan, J. P. Gambino, and Q. Z. Hong, “Formation and Stability of Silicides on Polycrystalline Silicon”, Mater. Sci. Eng. R16 (1996) 43-96.
[4] 陳力俊主編, “微電子材料與製程”, 中國材料科學學會出版, 2000。
[5] 莊達人, “VLSI製造技術”, 高立圖書有限公司出版, 2006。
[6] Y. Shacham-Diamand, and Y. Sverdlov, “Electrochemically Deposited Thin Film Alloys for ULSI and MEMS Applications”, Microelec. Eng. 50 (2000) 525-531.
[7] Z. Shi, S. Wu, and J. A. Szpunar, “Self-assembled Palladium Nanowires by Electroless Deposition”, Nanotechnology 64 (2006) 2161-2166.
[8] 羅吉宗, “薄膜科技與應用”, 全華科技出版, 2005。
[9] 黃瑞雄, 顏溪成, “漫談電化學”, 科學發展, 359 (2002) 22-27。
[10] 萬其超, “電化學”, 台灣商務出版, 1996。
[11] 川崎元雄, “電鍍學”, 世一出版, 1993。
[12] 蘇癸陽, “實用電鍍理論與實際”, 台南富文書局出版, 2000。
[13] 宋抑恆, “鍍鎳的理論與實務”, 徐氏基金出版, 1989。
[14] S. S. Djoki, “Electroless Deposition of Cobalt Using Hydrazine as a Reducing agent”, J. Electrochem. Soc. 144 (1997) 2358-2363.
[15] Z. Y. Li, C. H. Han, and J. Y. Shen, “Reaction Kinetics of Reduction of Co2+ by Hydrazine in Solution for the Preparation of Cobalt Nanoparticles”, Acta Chimica Sinica 64 (2006) 295-300.
[16] Y. Sverdlov, and Y. Shacham-Diamand, “Electroless Deposition of Co(W) Thin Films”, Microelectron. Eng. 70 (2003) 512-518.
[17] W. L. Liu, S. H. Tsai, and W. J. Chen, J. “Growth Kinetics of Electroless Cobalt Deposition by TEM”, Electrochem. Soc. 151 (2004) C680-C683.
[18] H. Cao, L. Wang, Y. Qiu, Q. Wu, G. Wang, L. Zhang, and X. Liu, “Generation and Growth Mechanism of Metal (Fe, Co, Ni) Nanotube Arrays”, Chem. Phys. Chem. 7 (2006) 1500-1504.
[19] R.J. Gilliam, S. J. Thorpe and D.W. Kirk “A Nucleation and Growth Study of Gold Nanowires and Nanotubes in Polymeric Membranes”, J. Appl. Electrochem. 37 (2007) 233-239.
[20] F. Wang, S .Arai, and K. C. Park, “Synthesis of Carbon Nanotube-supported Nickel-phosphorus Nanoparticles by an Electroless Process”, Carbon 7 (2006) 1307-1310.
[21] X. H. Chen, ; C.S. Chen, H. N. Xiao, H. B. Liu, L. P. Zhou, S. L. Li, and G. Zhang, “Dry Friction and Wear Characteristics of Nickel/Carbon Nanotube Electroless Composite Deposits”, Tribol. Int. 39 (2006) 22-28.
[22] L. Guo, S. Yang, and C. Chen, “One-step Solution Fabrication of Magnetic Chains Consisting of Jingle-bell-shaped Cobalt Mesospheres”, Appl. Phys. Lett. 89 (2006) 1031051-1031053.
[23] C. C. Büttner, and M. Zachariasa “Retarded Oxidation of Si Nanowires”, Appl. Phys. Lett. 89 (2006) 263106-263110.
[24] G Bilalbegovi´c, “Electronic Properties of Silica Nanowires”, J. Phys. Condens. Matter 18 (2006) 3829-3836.
[25] H. H. Hsu, C. W. Teng, S. J. Lin, and J. W. Yeh, “Sn/Pd Catalyzation and Electroless Cu Deposition on TaN Diffusion Barrier Layers”, J. Electrochem. Soc. 149 (2002) C143-C149.
[26] L. Li, M. An, and G. Wu, “A New Electroless Nickel Deposition Technique to Metallise SiCp/Al Composites”, Surf. Coat. Technol. 200 (2006) 5102-5112.
[27] R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-Assembled Metal Colloid Monolayers:An Approach to SERS Substrates”, Science 267 (1995) 1629-1632.
[28] 陳季南, 周釗生, “穿透式電子顯微鏡( TEM )在半導體製成之應用”, 電子月刊, 第三卷, 第三期, 99-111。
[29] 陳力俊, “材料電子顯微鏡學”, 行政院國家科學委員會精密儀器發展中心出版, 1994。
[30] Michael Quirk, and Julian Serda, “半導體製造技術”, 滄海書局出版, 2003。
[31] Z. Shi, S. Wu, and J. A. Szpunar, “Synthesis of Palladium Nanostructures by Spontaneous Electroless Deposition”, Chem. Phys. Lett. 422 (2006) 147-151.
[32] Y. Zhu, H. Zheng, Q. Yang, A. Pan, Z. Yang, and Y. Qian,“Growth of Dendritic Cobalt Nanocrystals at Room Temperature”, J. Cryst. Growth 260 (2004) 427-434.
[33] G. L. Ding, S. N/ Tewari, “Dendritic Morphologies of Directionally Solidified Single Crystals Along Different Crystallographic Orientations”, J. Cryst. Growth 236 (2002) 420-428.
[34] J. Alvarez, E. Lundgren, X. Torrells, S. Ferrer, ”Effect of a Surfactant in Homoepitaxial Growth of Ag (001): Dendritic Versus Faceted Island Morphologies”, Surf. Sci. 464 (2000) 165-175.
[35] S. Z. Wang, H. W. Xin, “Fractal and Dendritic Growth of Metallic Ag Aggregated from Different Kinds of γ-Irradiated Solutions”, J. Phys. Chem. B 104 (2000) 5681-5685.
[36] Q. Peng, Y. J. Dong, Z. X. Deng, Y. D. Li, “Selective Synthesis and Characterization of CdSe Nanorods and Fractal Nanocrystals”, Inorg. Chem. 41 (2002) 5249-5254.
[37] Z. R. Tian, J. Liu, J. A. Voigt, H. F. Xu, M. J. Mcdermott, “Dendritic Growth of Cubically Ordered Nanoporous Materials through Self-Assembly”, Nano Lett. 3 (2003) 89-92.
[38] G. S. Chen, Y. S. Tang, S. T. Chen, and T. J. Yang, “Electroless Deposition of Ultrathin Co-B Based Barriers for Cu Metallization Using an Innovative Seeding Technique”, Electrochem. Solid-State Lett. 9 (2006) C141-C145.
[39] K. Ito, S. Yae, T. Hamada, H. Nakano, N. Fukumuro, and H. Matsuda, “Autocatalytic Deposition of Pure Nickel Films Having Bright Surfaces and High Electrical Conductivity”, Electrochem. Commun. 2 (2005) 123-127.
[40] S. Yae, K. Ito, T. Hamada, N. Fukumuro, and H. Matsuda, “Electroless Deposition of Pure Nickel Films from a Simple Solution Consisting of Nickel Acetate and Hydrazine”, Plat. and Surf. Finish. (2005) 58-62.
[41] Y. Yamauchi, T. Yokoshima, T. Momma, T. Osaka, and K. Kuroda, “Fabrication of Magnetic Mesostructured Nickel-Cobalt Alloys from Lyotropic Liquid Crystalline Media by Electroless Deposition”, J. Mater. Chem. 14 (2004) 2935-2940.