| 研究生: |
李奕樺 I-Hua Li |
|---|---|
| 論文名稱: |
溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質 Photoelectrochemical performance of Cu-In-Zn-S thin films prepared by solvothermal process |
| 指導教授: |
李岱洲
Tai-Chou Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 溶劑熱法 |
| 外文關鍵詞: | CIZS(Cu-In-Zn-S) |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用溶劑熱法搭配不同的基材和四元成份的比例來製備Cu-In-Zn-S光觸媒薄膜,在固定Cu-Zn-S比例前提下,改變In的比例,製備出n和p型的光觸媒薄膜,並分析薄膜之光電化學性質及半導體型態。從實驗結果可以發現,使用Cu (NO3)2 + Zn(NO3)6H2O + In(NO3)•xH2O系列的前驅物且溶劑為水時,所製備的薄膜為CuIn5S8相和Cu2In2ZnS5相之混相;而在CuSO45H2O + InCl34H2O + ZnCl2系列,溶劑為無水乙醇並且使用APS改質之FTO玻璃為基材,此時製備出來的相為Cu2In2ZnS5相,藉由吸收光譜可以推測直接推測能隙為1.69~1.95 eV。
使用APS改質的FTO玻璃所形成之CIZS薄膜品質良好,且薄膜與基材的附著力優於未改質 FTO玻璃或使用MPS改質之CIZS薄膜。從電化學量測結果得知成功製備出n-type和p-type的CIZS薄膜。但在電化學測量後CIZS薄膜還是會脫落造成基材裸露,代表薄膜附著性依然不佳,因此換成有相似成份(In、S)的AIS(AgInS2)為基材,藉此增加CIZS 與基材的附著性,卻因而發現會有些許銅的硫化物(Cu31S16)存在薄膜中。
當使用FTO(APS)為基材時,測得在負偏壓下會有光電流值出現,但其光電流值偏低,可能是因附著性不加造成基材裸露,使得暗電流一直上升。然而,改用AIS(AgInS2)當作基材、從背面照光時(AIS往CIZS方向),發現相對於其他基材上會有較高的光電流值產生,並且有類似p-n junction的現象發生。為了增加光電流值產生,在AIS(AgInS2)薄膜上鍍上一層金之後再成長CIZS薄膜,藉此形成Z-scheme結構的特性,金觸媒在兩層薄膜之間當作電荷轉移之媒介,以增強電荷轉移的效果,使得在背面照光時保有n型和p型半導體的特性,並且光電流有明顯的增加,於負偏壓(-1.5V vs. SCE)光電流值約為0.5 mA/cm2。
In this study, we prepared Cu-In-Zn-S (CIZS) photocatalyst thin films using solvothermal method, in which different substrate modifications, anions of precursors, and molar ratios of the precursors were varied. It was found that n-type and p-type semiconductor materials can be obtained by changing the [In]/[Zn] molar ratios. To our best knowledge, it is the first report of tuning the CIZS conduction type as a function of relative composition. The morphology and photoelectrochemical (PEC) properties of thin films were subsequently studied. Results showed that thin films, utilizing NO3- as precursors and DI water as solvents, were the mixtures of CuIn5S8 and Cu2In2ZnS5; in contrast thin films on 3-Aminopropyltriethoxysilane (APS)-modified FTO-coated glass substrate utilizing Cl- and CuSO4 as precursors and ethanol as solvents, were single-phase Cu2In2ZnS5. The direct energy band gap determined from absorption spectrum was in the range of 1.69 to 1.95 eV.
Although the adhesion of the CIZS films on APS-modified substrate was improving, compared to the ones on bared and on MPS-modified FTO-coated glass substrates, the CIZS films peeled off after PEC measurement in aqueous solution. To mitigate this problem, AgInS2 (AIS) was used as the buffer at the CIZS-substrate interface. It is expected that, due to similar elements (In, S) presented in AIS and good adhesion of AIS on FTO-coated substrate, he attachment of CIZS films onto the AIS/FTO substrate can be greatly improved. Nevertheless, some CuS (Cu31S16) remained in CIZS films.
Regarding the photoelectrochemical properties of CIZS films as the photoanode, low photocurrent density was observed for CIZS on APS-modified FTO, perhaps due to the poor interface at the CIZS-substrate interface. In contrast, photo-electrode consisting of CIZS/AIS/FTO layered structure exhibited a better photoactivity, especially when the light was irradiated from the back side (from the glass window), similar to the p-n heterojunction reported in the literature.
In a parallel experiment, a layer of Au was coated on the AIS/FTO, before deposition of CIZS. In fact Au played an important role as a storage and recombination center for electrons, in this CIZS/Au/AIS/FTO Z-scheme structure. A photocurrent density of 0.5 mA /cm2 (under a bias of -1.5 V vs. SCE) was obtained. This study demonstrated that employing suitable synthesis strategy opened a new possibility of preparing thin film electrode from solution process. These semiconductor thin film can be further incorporated into various layered structure for photoelectrochemical application.
1. 經濟部能源局, 能源產業技術白皮書. 2014.
2. 經濟部能源局, 中華民國103能源統計手冊. 2014.
3. EPK團隊, 世界能源發展趨勢. http://www.energypk.com/cmspage.php?cont_id=left&id_num1=32&id_num2=0&id_num3=0 ,2011.
4. 聯合國政府間氣候變遷問題小組(IPCC),http://www.ipcc.ch/.
5. Wikipedia-Sunlight., http://en.wikipedia.org/wiki/Sunlight.
6. 中華太陽能聯誼會, http://www.solar-i.com/know.html.
7. 吳怡萱, 再生能源概論. 五南 2008.
8. 中國科普博覽, 氫氣安全性. http://159.226.2.2:82/gate/big5/www.kepu.net.cn/gb/technology/new_energy/web/a6_n30.html.
9. Lin, Y.-W., 以化學浴沉積法製備 Cu-In-S 化合物光電極薄膜之研究. 2011.
10. Fujishima, A., Electrochemical photolysis of water at a semiconductor electrode. nature 1972, 238, 37-38.
11. Sayama, K.; Arakawa, H., Photocatalytic decomposition of water and photocatalytic reduction of carbon dioxide over zirconia catalyst. The Journal of Physical Chemistry 1993, 97 (3), 531-533.
12. Khan, S. U.; Al-Shahry, M.; Ingler, W. B., Efficient photochemical water splitting by a chemically modified n-TiO2. science 2002, 297 (5590), 2243-2245.
13. Steinfeld, A., Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. International Journal of Hydrogen Energy 2002, 27 (6), 611-619.
14. Kato, H.; Asakura, K.; Kudo, A., Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. Journal of the American Chemical Society 2003, 125 (10), 3082-3089.
15. Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K., GaN: ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. Journal of the American Chemical Society 2005, 127 (23), 8286-8287.
16. Yang, X.; Wolcott, A.; Wang, G.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y., Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Letters 2009, 9 (6), 2331-2336.
17. Tsuji, I.; Kato, H.; Kudo, A., Visible‐Light‐Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a ZnS–CuInS2–AgInS2 Solid‐Solution Photocatalyst. Angewandte Chemie 2005, 117 (23), 3631-3634.
18. Sathish, M.; Viswanathan, B.; Viswanath, R., Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting. International Journal of Hydrogen Energy 2006, 31 (7), 891-898.
19. Di Iorio, Y.; Berruet, M.; Schreiner, W.; Vázquez, M., Characterization of CuInS2 thin films prepared by one-step electrodeposition. Journal of Applied Electrochemistry 2014, 44 (12), 1279-1287.
20. Yu, Y.-X.; Ouyang, W.-X.; Liao, Z.-T.; Du, B.-B.; Zhang, W.-D., Construction of ZnO/ZnS/CdS/CuInS2 Core–Shell Nanowire Arrays via Ion Exchange: p–n Junction Photoanode with Enhanced Photoelectrochemical Activity under Visible Light. ACS applied materials & interfaces 2014, 6 (11), 8467-8474.
21. Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A., Photocatalytic H2 Evolution under Visible-Light Irradiation over Band-Structure-Controlled
(CuIn) x Zn2 (1-x) S2 Solid Solutions. The Journal of Physical Chemistry B 2005, 109 (15), 7323-7329.
22. Zou, C.; Zhang, L.; Zhai, L.; Lin, D.; Gao, J.; Li, Q.; Yang, Y.; Chen, X. a.; Huang, S., Solution-based synthesis of quaternary Cu–In–Zn–S nanobelts with tunable composition and band gap. Chemical communications 2011, 47 (18), 5256-5258.
23. De Trizio, L.; Prato, M.; Genovese, A.; Casu, A.; Povia, M.; Simonutti, R.; Alcocer, M. J.; D’Andrea, C.; Tassone, F.; Manna, L., Strongly Fluorescent Quaternary Cu–In–Zn–S Nanocrystals Prepared from Cu1-x InS2 Nanocrystals by Partial Cation Exchange. Chemistry of Materials 2012, 24 (12), 2400-2406.
24. Cheng, K.-W.; Lee, W.-C.; Fan, M.-S., Photoelectrochemical performance of Cu–Zn–In–S film grown using one-step electrodeposition. Electrochimica Acta 2013, 87, 53-62.
25. Graeser, B. K.; Hages, C. J.; Yang, W. C.; Carter, N. J.; Miskin, C. K.; Stach, E. A.; Agrawal, R., Synthesis of (CuInS2) 0.5 (ZnS) 0.5 Alloy Nanocrystals and their use for the Fabrication of Solar Cells via Selenization. Chemistry of Materials 2014, 26 (14), 4060-4063.
26. Diwald, O.; Thompson, T. L.; Zubkov, T.; Goralski, E. G.; Walck, S. D.; Yates, J. T., Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light. The journal of physical chemistry B 2004, 108 (19), 6004-6008.
27. Wang, G.; Ling, Y.; Wang, H.; Xihong, L.; Li, Y., Chemically modified nanostructures for photoelectrochemical water splitting. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2014, 19, 35-51.
28. cell, W.-P., https://en.wikipedia.org/wiki/Photoelectrochemical_cell.
29. Zhang, J.; Xie, R.; Yang, W., A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters. Chemistry of Materials 2011, 23 (14), 3357-3361.
30. Liu, Y.; Huang, F.; Xie, Y.; Cui, H.; Zhao, W.; Yang, C.; Dai, N., Controllable Synthesis of Cu2In2ZnS5 Nano/Microcrystals and Hierarchical Films and Applications in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2013, 117 (20), 10296-10301.
31. Peng, S.; Cheng, F.; Liang, J.; Tao, Z.; Chen, J., Facile solution-controlled growth of CuInS2 thin films on FTO and TiO 2/FTO glass substrates for photovoltaic application. Journal of Alloys and Compounds 2009, 481 (1), 786-791.
32. Semiconductor Wikipedia, https://en.wikipedia.org/wiki/Semiconductor.
33. Rajeshwar, K., Fundamentals of semiconductor electrochemistry and photoelectrochemistry. Encyclopedia of electrochemistry 2002.
34. Lokhande, C.; Barkschat, A.; Tributsch, H., Contact angle measurements: an empirical diagnostic method for evaluation of thin film solar cell absorbers (CuInS 2). Solar energy materials and solar cells 2003, 79 (3), 293-304.
35. Ramanathan, K.; Contreras, M. A.; Perkins, C. L.; Asher, S.; Hasoon, F. S.; Keane, J.; Young, D.; Romero, M.; Metzger, W.; Noufi, R., Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin‐film solar cells. Progress in Photovoltaics: Research and Applications 2003, 11 (4), 225-230.
36. AbuShama, J. A.; Johnston, S.; Moriarty, T.; Teeter, G.; Ramanathan, K.; Noufi, R., Properties of ZnO/CdS/CuInSe2 solar cells with improved performance. Progress in Photovoltaics: Research and Applications 2004, 12 (1), 39-45.
37. Guillén, C.; Herrero, J., Characteristics of stacked CuInS 2 and CuGaS 2 layers as determined by the growth sequence. Thin solid films 2007, 515 (15), 5917-5920.
38. Chichibu, S.; Harada, Y.; Sugiyama, M.; Nakanishi, H., Metalorganic vapor phase epitaxy of Cu (Al x Ga 1− x)(S y Se 1− y)2 chalcopyrite semiconductors and their band offsets. Journal of Physics and Chemistry of Solids 2003, 64 (9), 1481-1489.
39. He, Y. CuInS2 thin films for photovoltaic: RF reactive sputter deposition and characterization. Universitätsbibliothek Giessen, 2003.
40. Wei, S.-H.; Zhang, S.; Zunger, A., Band structure and stability of zinc-blende-based semiconductor polytypes. Physical Review B 1999, 59 (4), R2478.
41. Alvarez-Garcıa, J.; Pérez-Rodrıguez, A.; Barcones, B.; Romano-Rodrıguez, A.; Morante, J.; Janotti, A.; Wei, S.-H.; Scheer, R., Polymorphism in CuInS2 epilayers: Origin of additional Raman modes. Applied physics letters 2002, 80 (4), 562-564.
42. Tell, B.; Shay, J.; Kasper, H., Room‐Temperature Electrical Properties of Ten I‐III‐VI2 Semiconductors. Journal of Applied Physics 1972, 43 (5), 2469-2470.
43. Look, D. C.; Manthuruthil, J. C., Electron and hole conductivity in CuInS2. Journal of Physics and Chemistry of Solids 1976, 37 (2), 173-180.
44. Rockett, A.; Birkmire, R., CuInSe2 for photovoltaic applications. Journal of Applied Physics 1991, 70 (7), R81-R97.
45. Ueng, H.; Hwang, H., Defect identification in undoped and phosphorus‐doped CuInS2 based on deviations from ideal chemical formula. Journal of applied physics 1987, 62 (2), 434-439.
46. Ueng, H.; Hwang, H., The defect structure of CuInS2. part I: Intrinsic defects. Journal of Physics and Chemistry of Solids 1989, 50 (12), 1297-1305.
47. Abou-Elfotouh, F.; Dunlavy, D.; Coutts, T., Intrinsic defect states in
CuInSe 2 single crystals. Solar Cells 1989, 27 (1), 237-246.
48. Tembhurkar, Y.; Hirde, J., Structural, optical and electrical properties of spray pyrolytically deposited films of copper indium diselenide. Thin Solid Films 1992, 215 (1), 65-70.
49. Aldakov, D.; Lefrançois, A.; Reiss, P., Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. Journal of Materials Chemistry C 2013, 1 (24), 3756-3776.
50. Ramasamy, K.; Malik, M. A.; Revaprasadu, N.; O’Brien, P., Routes to nanostructured inorganic materials with potential for solar energy applications. Chemistry of Materials 2013, 25 (18), 3551-3569.
51. Fan, F.-J.; Wu, L.; Yu, S.-H., Energetic I–III–VI2 and I2–II–IV–VI4 nanocrystals: synthesis, photovoltaic and thermoelectric applications. Energy & Environmental Science 2014, 7 (1), 190-208.
52. Pan, A.; Yang, H.; Liu, R.; Yu, R.; Zou, B.; Wang, Z., Color-Tunable Photoluminescence of Alloyed CdS x Se1-x Nanobelts. Journal of the American Chemical Society 2005, 127 (45), 15692-15693.
53. Smith, A. M.; Nie, S., Semiconductor nanocrystals: structure, properties, and band gap engineering. Accounts of chemical research 2009, 43 (2), 190-200.
54. Torimoto, T.; Ogawa, S.; Adachi, T.; Kameyama, T.; Okazaki, K.-i.; Shibayama, T.; Kudo, A.; Kuwabata, S., Remarkable photoluminescence enhancement of ZnS–AgInS2 solid solution nanoparticles by post-synthesis treatment. Chemical Communications 2010, 46 (12), 2082-2084.
55. Uematsu, T.; Taniguchi, S.; Torimoto, T.; Kuwabata, S., Emission quench of water-soluble ZnS–AgInS2 solid solution nanocrystals and its application to chemosensors. Chem. Commun. 2009, (48), 7485-7487.
56. Hunger, R.; Pettenkofer, C.; Scheer, R., Surface properties of (111),(001), and (110)-oriented epitaxial CuInS 2/Si films. Surface science 2001, 477 (1), 76-93.
57. Fernando, C.; Bandara, T.; Wethasingha, S., H 2 evolution from a photoelectrochemical cell with n-Cu2O photoelectrode under visible light irradiation. Solar energy materials and solar cells 2001, 70 (2), 121-129.
58. Singh, A.; Coughlan, C.; Milliron, D. J.; Ryan, K. M., Solution Synthesis and Assembly of Wurtzite-Derived Cu–In–Zn–S Nanorods with Tunable Composition and Band Gap. Chemistry of Materials 2015, 27 (5), 1517-1523.
59. Akkerman, Q. A.; Genovese, A.; George, C.; Prato, M.; Moreels, I.; Casu, A.; Marras, S.; Curcio, A.; Scarpellini, A.; Pellegrino, T., From Binary Cu2S to Ternary Cu–In–S and Quaternary Cu–In–Zn–S Nanocrystals with Tunable Composition via Partial Cation Exchange. ACS nano 2015, 9 (1), 521-531.
60. Mane, R.; Lokhande, C., Chemical deposition method for metal chalcogenide thin films. Materials Chemistry and Physics 2000, 65 (1), 1-31.
61. O'Brien, P.; McAleese, J., Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS. J. Mater. Chem. 1998, 8 (11), 2309-2314.
62. Cheng, K.-W.; Huang, C.-M.; Yu, Y.-C.; Li, C.-T.; Shu, C.-K.; Liu, W.-L., Photoelectrochemical performance of Cu-doped ZnIn2S4 electrodes created using chemical bath deposition. Solar Energy Materials and Solar Cells 2011, 95 (7), 1940-1948.
63. Morey, G. W., Hydrothermal synthesis. Journal of the American Ceramic Society 1953, 36 (9), 279-285.
64. Walton, R. I., Subcritical solvothermal synthesis of condensed inorganic materials. Chemical Society Reviews 2002, 31 (4), 230-238.
65. Li, Y.; Chen, G.; Wang, Q.; Wang, X.; Zhou, A.; Shen, Z., Hierarchical ZnS‐In2S3‐CuS Nanospheres with Nanoporous Structure: Facile Synthesis, Growth Mechanism, and Excellent Photocatalytic Activity. Advanced Functional Materials 2010, 20 (19), 3390-3398.
66. Mao, G.; Dong, W.; Kurth, D. G.; Möhwald, H., Synthesis of copper sulfide nanorod arrays on molecular templates. Nano Letters 2004, 4 (2), 249-252.
67. Gou, X.; Cheng, F.; Shi, Y.; Zhang, L.; Peng, S.; Chen, J.; Shen, P., Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn (S, Se)2 nano-/microstructures via facile solution route. Journal of the American Chemical Society 2006, 128 (22), 7222-7229.
68. Yan, G.; Huang, J.; Jia, A.; Luo, M., Formation of CuS submicrotubes with quadrate cross section. Materials Research Bulletin 2009, 44 (6), 1360-1365.
69. Toworfe, G.; Composto, R.; Shapiro, I.; Ducheyne, P., Nucleation and growth of calcium phosphate on amine-, carboxyl-and hydroxyl-silane self-assembled monolayers. Biomaterials 2006, 27 (4), 631-642.
70. Lam, K. F.; Yeung, K. L.; McKay, G., A rational approach in the design of selective mesoporous adsorbents. Langmuir 2006, 22 (23), 9632-9641.
71. 李芳紜, 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析; Electrochemical Impedance Spectroscopic Analysis of AgInS2 Thin Films Prepared by Using Ultrasonic Assisted Chemical Bath Deposition. 2013.
72. Kudo, A.; Tsuji, I.; Kato, H., AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation. Chemical communications 2002, (17), 1958-1959.
73. Dubale, A. A.; Su, W.-N.; Tamirat, A. G.; Pan, C.-J.; Aragaw, B. A.; Chen, H.-M.; Chen, C.-H.; Hwang, B.-J., The synergetic effect of graphene on Cu 2O nanowire arrays as a highly efficient hydrogen evolution photocathode in water splitting. Journal of Materials Chemistry A 2014, 2 (43), 18383-18397.
74. Li, H.; Zhou, Y.; Tu, W.; Ye, J.; Zou, Z., State‐of‐the‐Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance. Advanced Functional Materials 2015, 25 (7), 998-1013.
75. Maeda, K., Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catalysis 2013, 3 (7), 1486-1503.
76. Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X., Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews 2014, 43 (15), 5234-5244.